scholarly journals Behavioral Approaches to Study Top-Down Influences on Active Listening

2021 ◽  
Vol 15 ◽  
Author(s):  
Kameron K. Clayton ◽  
Meenakshi M. Asokan ◽  
Yurika Watanabe ◽  
Kenneth E. Hancock ◽  
Daniel B. Polley

The massive network of descending corticofugal projections has been long-recognized by anatomists, but their functional contributions to sound processing and auditory-guided behaviors remain a mystery. Most efforts to characterize the auditory corticofugal system have been inductive; wherein function is inferred from a few studies employing a wide range of methods to manipulate varying limbs of the descending system in a variety of species and preparations. An alternative approach, which we focus on here, is to first establish auditory-guided behaviors that reflect the contribution of top-down influences on auditory perception. To this end, we postulate that auditory corticofugal systems may contribute to active listening behaviors in which the timing of bottom-up sound cues can be predicted from top-down signals arising from cross-modal cues, temporal integration, or self-initiated movements. Here, we describe a behavioral framework for investigating how auditory perceptual performance is enhanced when subjects can anticipate the timing of upcoming target sounds. Our first paradigm, studied both in human subjects and mice, reports species-specific differences in visually cued expectation of sound onset in a signal-in-noise detection task. A second paradigm performed in mice reveals the benefits of temporal regularity as a perceptual grouping cue when detecting repeating target tones in complex background noise. A final behavioral approach demonstrates significant improvements in frequency discrimination threshold and perceptual sensitivity when auditory targets are presented at a predictable temporal interval following motor self-initiation of the trial. Collectively, these three behavioral approaches identify paradigms to study top-down influences on sound perception that are amenable to head-fixed preparations in genetically tractable animals, where it is possible to monitor and manipulate particular nodes of the descending auditory pathway with unparalleled precision.

2021 ◽  
Vol 11 (1) ◽  
pp. 112-128
Author(s):  
Caitlin N. Price ◽  
Deborah Moncrieff

Communication in noise is a complex process requiring efficient neural encoding throughout the entire auditory pathway as well as contributions from higher-order cognitive processes (i.e., attention) to extract speech cues for perception. Thus, identifying effective clinical interventions for individuals with speech-in-noise deficits relies on the disentanglement of bottom-up (sensory) and top-down (cognitive) factors to appropriately determine the area of deficit; yet, how attention may interact with early encoding of sensory inputs remains unclear. For decades, attentional theorists have attempted to address this question with cleverly designed behavioral studies, but the neural processes and interactions underlying attention’s role in speech perception remain unresolved. While anatomical and electrophysiological studies have investigated the neurological structures contributing to attentional processes and revealed relevant brain–behavior relationships, recent electrophysiological techniques (i.e., simultaneous recording of brainstem and cortical responses) may provide novel insight regarding the relationship between early sensory processing and top-down attentional influences. In this article, we review relevant theories that guide our present understanding of attentional processes, discuss current electrophysiological evidence of attentional involvement in auditory processing across subcortical and cortical levels, and propose areas for future study that will inform the development of more targeted and effective clinical interventions for individuals with speech-in-noise deficits.


1965 ◽  
Vol 209 (4) ◽  
pp. 705-710 ◽  
Author(s):  
Michael D. Klein ◽  
Lawrence S. Cohen ◽  
Richard Gorlin

Myocardial blood flow in human subjects was assessed by comparative simultaneous measurement of krypton 85 radioactive decay from coronary sinus and precordial scintillation. Empirical correction of postclearance background from precordial curves yielded a high degree of correlation between flows derived from the two sampling sites (r = .889, P < .001). Comparison of left and right coronary flows in nine subjects revealed similarity in flow through the two vessels over a wide range of actual flow values (r = .945, P < .001).


1992 ◽  
Vol 03 (01) ◽  
pp. 137-170 ◽  
Author(s):  
MASSOUD PEDRAM ◽  
ERNEST S. KUH

This paper presents a hierarchical floorplanning approach for macrocell layouts which is based on the bottom-up clustering, shape function computation, and top-down floorplan optimization with integrated global routing and pin assignment. This approach provides means for specifying and techniques for satisfying a wide range of constraints (physical, topological, timing) and is, therefore, able to generate floorplans for a number of different layout styles. A systematic and efficient optimization procedure during the selection of suitable floorplan patterns that integrates floorplanning, global routing and pin assignment, a new pin assignment technique based on linear assignment and driven by the global routing solution and floorplan topology, and an effective timing-driven floorplanning scheme are among the other novel features of the floorplanner. These techniques have been incorporated in BEAR-FP, a macrocell layout system developed at the University of California, Berkeley. Results on various placement and floorplanning benchmarks are quite good.


2017 ◽  
Author(s):  
Fabian Schoenenberger ◽  
Stephan Henne ◽  
Matthias Hill ◽  
Martin K. Vollmer ◽  
Giorgos Kouvarakis ◽  
...  

Abstract. A wide range of anthropogenic halocarbons is released to the atmosphere, contributing to stratospheric ozone depletion and global warming. Using measurements of atmospheric abundances for the estimation of halocarbon emissions on the global and regional scale has become an important top-down tool for emission validation in the recent past, but many populated and developing areas of the world are only poorly covered by the existing atmospheric halocarbon measurement network. Here we present six months of continuous halocarbon observations from Finokalia on the island of Crete in the Eastern Mediterranean. The gases measured are the hydrofluorocarbons (HFCs), HFC-134a (CH2FCF3), HFC-125 (CHF2CF3), HFC-152a (CH3CHF2) and HFC-143a (CH3CF3), and the hydrochlorofluorocarbons (HCFCs), HCFC-22 (CHClF2) and HCFC-142b (CH3CClF2). The Eastern Mediterranean is home to 250 million inhabitants, consisting of a number of developed and developing countries, for which different emission regulations exist under the Kyoto and Montreal Protocols. Regional emissions of halocarbons were estimated with Lagrangian atmospheric transport simulations and a Bayesian inverse modelling system, using measurements at Finokalia in conjunction with those from Advanced Global Atmospheric Gases Experiment (AGAGE) sites at Mace Head (Ireland), Jungfraujoch (Switzerland) and Monte Cimone (Italy). Measured peak mole fractions at Finokalia showed generally smaller amplitudes for HFCs than at the European AGAGE sites, except periodic peaks of HFC-152a, indicating strong upwind sources. Higher peak mole fractions were observed for HCFCs, suggesting continued emissions from nearby developing regions such as Egypt and the Middle East. For 2013, the Eastern Mediterranean inverse emission estimates for the four analysed HFCs and the two HCFCs were 14.7 (6.7–23.3) Tg CO2eq yr-1 and 9.7 (4.3–15.7) Tg CO2eq yr-1, respectively. These emissions contributed 17.3 % (7.9–27.4 %) and 53 % (23.5–86%) to the total inversion domain, which covers the Eastern Mediterranean as well as Central and Western Europe. Greek bottom-up HFC emissions reported to the UNFCCC were much smaller than our top-down estimates, whereas for Turkey our estimates agreed with UNFCCC-reported values for HFC-125 and HFC-143a, but were much and slightly smaller for HFC-134a and HFC-152a, respectively. Sensitivity estimates suggest an improvement of the a posteriori emission estimates, i.e. a reduction of the uncertainties by 40–80 %, compared to an inversion using only the existing Central European AGAGE observations.


2004 ◽  
Vol 01 (04) ◽  
pp. 345-356
Author(s):  
HYUNG-MIN PARK ◽  
JONG-HWAN LEE ◽  
TAESU KIM ◽  
UN-MIN BAE ◽  
BYUNG TAEK KIM ◽  
...  

An auditory model has been developed for an intelligent speech information acquisition system in real-world noisy environment. The developed mathematical model of the human auditory pathway consists of three components, i.e. the nonlinear feature extraction from cochlea to auditory cortex, the binaural processing at superior olivery complex, and the top-down attention from higher brain to the cochlea. The feature extraction is based on information-theoretic sparse coding throughout the auditory pathway. Also, the time-frequency masking is incorporated as a model of the lateral inhibition in both time and frequency domain. The binaural processing is modeled as the blind signal separation and adaptive noise canceling based on the independent component analysis with hundreds of time-delays for noisy reverberated signals. The Top-Down (TD) attention comes from familiarity and/or importance of the sensory information, i.e. the sound, and a simple but efficient TD attention model had been developed based on the error backpropagation algorithm. Also, the binaural processing and top-down attention are combined for speech signals with heavy noises. This auditory model requires extensive computing, and special hardware had been developed for real-time applications. Experimental results demonstrate much better recognition performance in real-world noisy environments.


Children ◽  
2020 ◽  
Vol 7 (7) ◽  
pp. 75 ◽  
Author(s):  
Shervin Assari ◽  
Golnoush Akhlaghipour ◽  
Shanika Boyce ◽  
Mohsen Bazargan ◽  
Cleopatra H. Caldwell

Background: Reward sensitivity (fun-seeking) is a risk factor for a wide range of high-risk behaviors. While high socioeconomic status (SES) is known to reduce reward sensitivity and associated high-risk behaviors, less is known about the differential effects of SES on reward sensitivity. It is plausible to expect weaker protective effects of family SES on reward sensitivity in racial minorities, a pattern called Minorities’ Diminished Returns (MDRs). Aim: We compared Caucasian and African American (AA) children for the effects of subjective family SES on children’s fun-seeking. Methods: This was a cross-sectional analysis of 7061 children from the Adolescent Brain Cognitive Development (ABCD) study. The independent variable was subjective family SES. The main outcome was children’s fun-seeking measured by the behavioral approach system (BAS) and behavioral avoidance system (BIS). Age, gender, marital status, and household size were the covariates. Results: In the overall sample, high subjective family SES was associated with lower levels of fun-seeking. We also found a statistically significant interaction between race and subjective family SES on children’s fun-seeking in the overall sample, suggesting that high subjective family SES is associated with a weaker effect on reducing fun-seeking among AA than Caucasian children. In race-stratified models, high subjective family SES was protective against fun-seeking of Caucasian but not AA children. Conclusion: Subjective family SES reduces the fun-seeking for Caucasian but not AA children.


2019 ◽  
Vol 30 (3) ◽  
pp. 875-887
Author(s):  
Kai Hwang ◽  
James M Shine ◽  
Dillan Cellier ◽  
Mark D’Esposito

Abstract Past studies have demonstrated that flexible interactions between brain regions support a wide range of goal-directed behaviors. However, the neural mechanisms that underlie adaptive communication between brain regions are not well understood. In this study, we combined theta-burst transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging to investigate the sources of top-down biasing signals that influence task-evoked functional connectivity. Subjects viewed sequences of images of faces and buildings and were required to detect repetitions (2-back vs. 1-back) of the attended stimuli category (faces or buildings). We found that functional connectivity between ventral temporal cortex and the primary visual cortex (VC) increased during processing of task-relevant stimuli, especially during higher memory loads. Furthermore, the strength of functional connectivity was greater for correct trials. Increases in task-evoked functional connectivity strength were correlated with increases in activity in multiple frontal, parietal, and subcortical (caudate and thalamus) regions. Finally, we found that TMS to superior intraparietal sulcus (IPS), but not to primary somatosensory cortex, decreased task-specific modulation in connectivity patterns between the primary VC and the parahippocampal place area. These findings demonstrate that the human IPS is a source of top-down biasing signals that modulate task-evoked functional connectivity among task-relevant cortical regions.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Gajanan S Revankar ◽  
Noriaki Hattori ◽  
Yuta Kajiyama ◽  
Tomohito Nakano ◽  
Masahito Mihara ◽  
...  

Abstract In Parkinson’s disease, a precursor phenomenon to visual hallucinations presents as ‘pareidolias’ which make ambiguous forms appear meaningful. To evoke and detect pareidolias in patients, a noise pareidolia test was recently developed, although its task-dependent mechanisms are yet to be revealed. When subjected to this test, we hypothesized that patients exhibiting pareidolias would show altered top-down influence of visual processing allowing us to demonstrate the influence of pareidolic illusionary behaviour in Parkinson’s disease patients. To that end, we evaluated eye-movement strategies and fixation-related presaccadic activity on scalp EEG when participants performed the test. Twelve healthy controls and 21 Parkinson’s disease patients, evaluated for cognitive, visuo-spatial and executive functions, took a modified computer-based version of the noise pareidolia test in a free-viewing EEG eye-tracking experiment. Eye-tracking metrics (fixation-related durations and counts) documented the eye movement behaviour employed in correct responses (face/noise) and misperceptions (pareidolia/missed) during early and late visual search conditions. Simultaneously, EEG recorded the presaccadic activity in frontal and parietal areas of the brain. Based on the noise pareidolia test scores, we found certain Parkinson’s disease patients exhibited pareidolias whereas others did not. ANOVA on eye-tracking data showed that patients dwelled significantly longer to detect faces and pareidolias which affected both global and local search dynamics depending on their visuo-perceptual status. Presaccadic activity in parietal electrodes for the groups was positive for faces and pareidolias, and negative for noise, though these results depended mainly on saccade size. However, patients sensitive to pareidolias showed a significantly higher presaccadic potential on frontal electrodes independent of saccade sizes, suggesting a stronger frontal activation for pareidolic stimuli. We concluded with the following interpretations (i) the noise pareidolia test specifically characterizes visuo-perceptual inadequacies in patients despite their wide range of cognitive scores, (ii) Parkinson’s disease patients dwell longer to converge attention to pareidolic stimuli due to abnormal saccade generation proportional to their visuo-perceptual deficit during early search, and during late search, due to time-independent alteration of visual attentional network and (iii) patients with pareidolias show increased frontal activation reflecting the allocation of attention to irrelevant targets that express the pareidolic phenomenon. While the disease per se alters the visuo-perceptual and oculomotor dynamics, pareidolias occur in Parkinson’s disease due to an abnormal top-down modulation of visual processing that affects visual attention and guidance to ambiguous stimuli.


1989 ◽  
Vol 32 (4) ◽  
pp. 887-911 ◽  
Author(s):  
Richard S. Tyler ◽  
Brian C. J. Moore ◽  
Francis K. Kuk

The main purpose of this study was to provide an independent corroboration of open-set word recognition in some of the better cochlear-implant patients. These included the Chorimac, Nucleus (one group from the U.S.A. and one group from Hannover, Germany), Symbion, Duren/Cologne and 3M/Vienna implants. Three experiments are reported: (1) word recognition in word lists and in sentences; (2) environmental sound perception, and (3) gap detection. On word recognition, the scores of 6 Chorimac patients averaged 2.5% words and 0.7% words in sentences correct in the French tests. In the German tests, the scores averaged 17% words and 10% words in sentences for 10 Duren/Cologne patients, 15% words and 16% words in sentences for 9 3M/Vienna patients, and 10% words and 16% words in sentences (3% to 26%) for 10 Nucleus/Hannover patients. In the English tests, the scores averaged 11% words and 29.6% words in sentences for l0 Nucleus-U.S.A. patients, and 13.7% words and 35.7% words in sentences for the 9 Symbion patients. The ability to recognize recorded environmental sounds was measured with a closed set of 18 sounds. Performance averaged 23% correct for Chorimac patients, 41% correct for 3M/Vienna patients, 44% correct for Nucleus/Hannover patients, 21% correct for Duren/Cologne patients, 58% correct for Nucleus/U.S.A. patients, and 83% correct for Symbion patients. A multidimensional scaling analysis suggested that patients were, in part, utilizing information about the envelope and about the periodic/aperiodic nature of some of the sounds. Gap detection thresholds with a one-octave wide noise centered at 500 Hz varied widely among patients. Typically, patients with gap thresholds less than 40 ms showed a wide range of performance on speech perception tasks, whereas patients with gap-detection thresholds greater than 40 ms showed poor word recognition skills.


1979 ◽  
Vol 7 (4) ◽  
pp. 91-100
Author(s):  
Lee W. Frederiksen

There seems to be little doubt that smoking can be dangerous to your health. A growing body of scientific data has linked the excessive use of tobacco to an increased incidence of a wide range of disorders including cancer of the lung, bladder and oral cavity, cardiovascular disorders such as coronary heart disease and atherosclerosis and pulmonary disorders such as bronchitis and emphysema (USPHS, 1975, 1877). yet, the development of effective and durable treatments for smoking behavior has been an elusive goal. While there are some encouraging signs of progress, recent literature reviews (Bernstein & McAlister, 1976; Frederiksen & Simon, in press; Lichtenstein & Danaher, 1976) continue to conclude that the treatment of smoking is characterized by good initial success but very high rates of “relapse”. Despite our best efforts we are unable to effectively help anywhere from 20–80% of smokers attempting to quit. While the abovementioned reviewers agree that we do have far to go, they also argue that a “behavioral” approach offers us our best chance for advancement, both from a methodological and treatment outcome perspective.


Sign in / Sign up

Export Citation Format

Share Document