scholarly journals m(6)A Modification of lncRNA NEAT1 Regulates Chronic Myelocytic Leukemia Progression via miR-766-5p/CDKN1A Axis

2021 ◽  
Vol 11 ◽  
Author(s):  
Fang-Yi Yao ◽  
Cui Zhao ◽  
Fang-Min Zhong ◽  
Ting-Yu Qin ◽  
Fang Wen ◽  
...  

BackgroundChronic myeloid leukemia (CML) is an acquired hematopoietic stem malignant disease originating from the myeloid system. Long non-coding RNAs (lncRNAs) have been widely explored in cancer tumorigenesis. However, their roles in CML remain largely unclear.MethodsThe peripheral blood mononuclear cells (PBMCs) and CML cell lines (K562, KCL22, MEG01, BV173) were collected for in vitro research. Real-time quantitative polymerase chain reaction was used to determine the mRNA expression levels. Cell viability and apoptosis were analyzed by cell counting kit 8 and flow cytometry assays. The targeting relationships were predicted using Starbase and TargetScan and ulteriorly verified by RNA pull-down and luciferase reporter assays. Western blotting assay was performed to assess the protein expressions. N6-methyladenosine (m6A) modification sites were predicted by SRAMP and confirmed by Methylated RNA immunoprecipitation (MeRIP) assay.ResultsLncRNA nuclear-enriched abundant transcript 1 (NEAT1) expression levels were decreased in the CML cell lines and PBMCs of CML patients. Moreover, METTL3-mediated m6A modification induced the aberrant expression of NEAT1 in CML. Overexpression of NEAT1 inhibited cell viability and promoted the apoptosis of CML cells. Additionally, miR-766-5p was upregulated in CML PBMCs and abrogated the effects of NEAT1 on cell viability and apoptosis of the CML cells. Further, CDKN1A was proved to be the target gene of miR-766-5p and was downregulated in the CML PBMCs. Knockdown of CDKN1A reversed the effects of NEAT1.ConclusionThe current research elucidates a novel METTL3/NEAT1/miR-766-5p/CDKN1A axis which plays a critical role in the progression of CML.

2018 ◽  
Vol 32 ◽  
pp. 205873841877265 ◽  
Author(s):  
Hong Zhang ◽  
Yuechang Cai ◽  
Li Zheng ◽  
Zhanlei Zhang ◽  
Xiaofeng Lin ◽  
...  

Our study attempted to verify the effect of lncRNA BST2 interferon-stimulated positive regulator (BISPR) on cell viability, propagation and invasiveness of thyroid papillary carcinoma (TPC) and the interactive relationship between BISPR and miR-21-5p. Microarray analyzed the aberrant expression lncRNA BISPR in TPC. BISPR and miR-21-5p as well as B-cell lymphoma-2 (Bcl-2) expressions in TPC cells were determined by quantitative polymerase chain reaction (qRT-PCR) and Western blot. Cell counting kit-8 (CCK-8) assay, dual luciferase reporter assay, and transwell assay were conducted to manifest cell viability, propagation, and invasiveness of TPC cells. Flow cytometry was performed to determine the apoptosis and cell cycle of TPC cells. Mouse xenograft model was built to testify the effect of BISPR on tumor growth. BISPR in TPC tissues was over-expressed. BISPR knockdown restrained the propagation and invasiveness and enhanced the iodine uptake of TPC cells. The tumor-forming rate reduced after BISPR knockdown. In addition, miR-21-5p was lowly expressed in cancer tissues. BISPR promoted the development of TPC cells by inhibiting miR-21-5p expression. Bcl-2 was suppressed by miR-21-5p and sh-BISPR. BISPR, which was over-expressed in TPC, improved TPC cell viability, propagation, and invasiveness. MiR-21-5p was lowly expressed in TPC which inhibited Bcl-2 expression. BISPR stimulated propagation and invasiveness of TPC cells by depressing miR-21-5p.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi209-vi210
Author(s):  
Ebin Sebastian ◽  
Tiantian Cui ◽  
Erica Hlavin Bell ◽  
Joseph McElroy ◽  
Benjamin Johnson ◽  
...  

Abstract BACKGROUND Glioblastoma is the most aggressive brain tumor with poor prognosis despite the best available treatment. MicroRNAs (miRNAs) are emerging as promising, novel prognostic biomarkers and therapeutic targets in glioblastoma. In a previous study, we demonstrated that miR-4516 predicts poor prognosis and functions as an oncogene in glioblastoma. Aim of the current study is to examine the role miR-4516 in radiation resistance and identify downstream targets contributing to this phenotype METHODS Radiosensitization was evaluated by cell viability and clonogenic assays. Cell apoptosis was evaluated using flow cytometry and immunoblotting. Potential targets of miR-4516 were identified using bioinformatic analysis (Targetscan and miRDB) and confirmed by luciferase reporter assays. Results were validated using immunoblotting. miR-4516 expression in glioblastoma cell lines after radiation treatment was quantified by qRT-PCR. RESULTS Expression of miR-4516 was increased up to 15 fold following radiation treatment, peaking at around 15min-60 min in primary and established glioblastoma cell lines including GBM 08-387, GBM 30 and U87-MG. Furthermore, inhibition of miR-4516 sensitized GBM 08-387, GBM30 and U87-MG cells to radiation in comparison to control groups as determined by cell viability and clonogenic assays. Further, miR-4516 inhibition induced apoptosis in these cell lines following radiation treatment. While conducting mechanistic studies, we found that the tumor-promoting function of miR-4516 was, in part, mediated by inhibition of p21 and PTPN14, two direct targets of miR-4516 CONCLUSION Our data suggest that radiation induces the expression of miR-4516 in glioblastoma cell lines. This miRNA plays a critical role in radio-resistance and promotes aggressive phenotypes in glioblastoma and therefore, functional analyses of its target pathways may uncover novel therapeutically vulnerable target(s) in glioblastoma. FUNDING: R01CA108633, R01CA169368, RC2CA148190, U10CA180850-01(NCI), Brain Tumor Funders Collaborative Grant, and OSU-CCC (all to AC). The Ton and Patricia Bohnenn Fund for Neuro_Oncology Research (to PR).


2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Qian Li ◽  
Jing Zhang ◽  
Dong-Mei Su ◽  
Li-Na Guan ◽  
Wei-Hong Mu ◽  
...  

Abstract Background Pre-eclampsia (PE) is regarded as the leading cause of maternal and neonatal morbidity and mortality. Nevertheless, the potential mechanism for the regulation of trophoblast behaviors and the pathogenesis of PE remain largely elusive. Recently, accumulating evidence emphasized that aberrant expression of long non-coding RNAs (lncRNAs) functions as imperative regulators in human diseases, including PE. Thus, identifying PE-related specific lncRNAs to uncover the underlying molecular mechanism is of much significance. However, the functional roles and underlying mechanisms of lncRNAs in PE progression remain unclear. Method Placenta tissues obtained from patients with PE and healthy pregnant women were performed to measure TUG1 expression by qRT-PCR analysis. Transient transfections were conducted to alter TUG1 expression. Cell Counting Kit-8 (CCK-8) and flow cytometry assays were carried out to assess cell proliferation and apoptosis, respectively. Transwell and tube formation assays were performed to measure the capacity of cell invasion and angiogenesis. Moreover, the luciferase reporter assay was subjected to verify the binding relationship between TUG1 and miR-29b. Western blot analysis was performed to detect the expression of key proteins in the PI3K/AKT and ERK pathway. Results Here, we identified a lncRNA, TUG1, which was notably decreased in placental samples of PE patients. Functional experiments of loss- or gain-of-function assays also verified that ectopic expression of TUG1 promoted cell proliferation, invasion, and angiogenesis, but negatively regulated cell apoptosis, whereas TUG1 inhibition presented the opposite effects. Furthermore, mechanistic researches revealed that TUG1 could act as a molecular sponge for miR-29b, thus regulating MCL1, VEGFA, and MMP2 to modulate PE development. Conclusions Taken together, our findings demonstrated that TUG1 exerts as a critical role in PE progression, which might furnish a novel therapeutic marker for PE treatment.


2021 ◽  
pp. 096032712110434
Author(s):  
Yunlai Zhi ◽  
Fanghu Sun ◽  
Chengkuan Cai ◽  
Haitao Li ◽  
Kunpeng Wang ◽  
...  

Background Bladder cancer (BCa) is a common genitourinary malignancy with higher incidence in males. Long intergenic non-protein coding RNA 265 (LINC00265) is identified as an oncogene in many malignancies, while its role in BCa development remains unknown. Purpose To explore the functions and mechanism of LINC00265 in BCa Research Design Reverse transcription quantitative polymerase chain reaction was performed to examine LINC00265 expression in BCa cells. Cell counting kit-8 assays, colony formation assays, TdT-mediated dUTP Nick-End Labeling assays, and Transwell assays were conducted to examine BCa cell viability, proliferation, apoptosis, and migration. Luciferase reporter assays and RNA immunoprecipitation assays were carried out to explore the binding capacity between miR-4677-3p and messenger RNA fibroblast growth factor 6 (FGF6) (or LINC00265). Xenograft tumor model was established to explore the role of LINC00265 in vivo. Results LINC00265 was highly expressed in BCa cells. LINC00265 knockdown inhibited xenograft tumor growth and BCa cell viability, proliferation and migration while enhancing cell apoptosis. Moreover, LINC00265 interacted with miR-4677-3p to upregulate the expression of FGF6. FGF6 overexpression reversed the suppressive effect of LINC00265 knockdown on malignant phenotypes of BCa cells. Conclusions LINC00265 promotes the viability, proliferation, and migration of BCa cells by binding with miR-4677-3p to upregulate FGF6 expression.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Baojie Kang ◽  
Caihong Qiu ◽  
Ying Zhang

The lncRNA small nucleolar host gene 3 (SNHG3) was discovered to play an important role in the occurrence and development of lung adenocarcinoma (LUAD). However, the underlying molecular mechanism of SNHG3 in LUAD remains unclear. In the present study, SNHG3 expression levels in LUAD tissues and cell lines were analyzed using reverse transcription-quantitative PCR. The effects of SNHG3 on the proliferation, apoptosis, migration, and invasion of LUAD cells were determined using Cell Counting Kit-8, colony formation, flow cytometry, wound healing, and Transwell chamber assays, respectively. The specific underlying mechanism of SNHG3 in LUAD was investigated using bioinformatics analysis and a dual luciferase reporter assay. The results revealed that SNHG3 expression levels were downregulated in LUAD tissues and cell lines. Functionally, SNHG3 overexpression suppressed the proliferation, migration, and invasion of LUAD cells, while promoting apoptosis. Mechanistically, microRNA- (miR-) 890 was identified as a potential target of SNHG3, and its expression was negatively regulated by SNHG3. Notably, SNHG3 was found to promote LUAD progression by targeting miR-890. In conclusion, the findings of the present study revealed that lncRNA SNHG3 promoted the occurrence and progression of LUAD by regulating miR-890 expression.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8394 ◽  
Author(s):  
Wei Zhou ◽  
Kang Huang ◽  
Qiuyan Zhang ◽  
Shaojun Ye ◽  
Zibiao Zhong ◽  
...  

Background Aberrant expression of long noncoding RNAs are implicated in the pathogenesis of human malignancies. LINC00844 expression is dramatically downregulated in prostate cancer, and functional studies have revealed the association between the aberrant expression of LINC00844 and prostate cancer cell invasion and metastasis. However, the function and mechanism of action of LINC00844 in the pathogenesis of hepatocellular carcinoma (HCC) are poorly understood. Methods LINC00844 and N-Myc downstream-regulated 1 (NDRG1) expression in HCC tissues and cell lines was detected with real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Correlations between LINC00844 expression level and clinicopathological features were investigated using the original data from The Cancer Genome Atlas (TCGA) database. HepG2 and HCCLM9 cell lines were transfected with Lv-LIN00844 virus to obtain LINC00844-overexpressing cell lines. Cell proliferation and cell invasion and migration were examined with the cell counting kit-8 (CCK-8) and transwell assay, respectively. Furthermore, the correlation between LINC00844 and NDRG1 expression was analysed using Pearson’s correlation analysis. Results LINC00844 expression was significantly downregulatedin HCC tissues and cell lines, and a statistical correlation was detected between low LINC00844 expression and sex (Female), advanced American Joint Committee on Cancer (AJCC) stage (III + IV), histological grade (G3 + G4), and vascular invasion (Micro and Macro). In vitro experiments showed that LINC00844 overexpression significantly repressed the proliferation, migration, and invasion of HCC cells. NDRG1 expression was higher in HCC tissues and LINC00844 could partly inhibit the expression of NDRG1.


2020 ◽  
Vol 19 (9) ◽  
pp. 1821-1826
Author(s):  
Xiaosheng Jin ◽  
Peipei Cai ◽  
Zhengchao Shi ◽  
Fangpeng Ye ◽  
Tingting Ji ◽  
...  

Purpose: Gastric cancer (GC) is one of the most frequent tumors with high mortality rate, worldwide. A proper understanding of the mechanism  underlying its progression is required for its diagnosis and development of novel treatment option. MicroRNAs are associated with the development and advancement of different types of cancer, including GC. The current research was aimed at investigating the molecular and biological function of miR-148a-3p in GC development.Methods: A human normal gastric epithelial cell line, GES-1 (control) as well as four GC cell lines (NUGC-4, SNU-520, STKM-2 and MKN-74) were employed for the study. MiR-148a-3p and ATP6AP2 expression levels in GC cell lines were examined by RT-qPCR technique. Transfection procedure was used to upregulate miR-148a-3p expression in the MKN-45 cell line. MTT assay was utilized to evaluate cell viability in GC cell lines. The molecular interaction between miR-148a-3p and ATP6AP2 was predicted using bioinformatics system and the prediction was then validated by luciferase reporter assay.Results: Expression levels of miR-148-3p was low, whilst that of ATP6AP2 was high in GC cell lines. MiR-148a-3p overexpression resulted in the reduction of cell viability in GC cell lines. More so, it was confirmed that miR-148-3p, as a post-transcriptional regulator inhibited ATP6AP2 expression by having a negative association with it in GC cells. More so, ATP6AP2 was found to be a direct target of miR-148a-3p.Conclusion: Our results revealed that miR-148a-3p plays a crucial function in GC development through targeting ATP6AP2. This finding could be explored in the discovery of new therapeutic approaches for GC treatment. Keywords: ATP6AP2, Cell viability, Gastric cancer, miR-148a-3p, Progression


2020 ◽  
Vol 168 (6) ◽  
pp. 603-609
Author(s):  
Xijun Gong ◽  
Xiaolin Wang ◽  
Fangfang Zhou

Abstract This study aims to identify potential microRNAs (miRNAs) contribute to liver fibrosis progression and investigate how the miRNA is involved. We recruited totally 58 patients. Magnetic resonance imaging was employed to detect fibrosis. Classification of liver fibrosis was carried out by Ishak scoring system. Cell viability was tested using cell counting kit-8. Measurements of mRNA and protein expressions were conducted using real-time quantitative polymerase chain reaction and western blotting. Luciferase reporter assay was recruited for determination of miR-29b-3p targets. We found that relative enhancement (RE) values were reduced with the increases in fibrosis stages and was negatively associated with Ishak scores. In comparison with patients without liver fibrosis, miR-29b-3p level was remarkably reduced in those with liver fibrosis. Its level was found to be positively associated with RE values. Transforming growth factor beta 1 (TGF-β1)-induced hepatic stellate cell (HSC) activation significantly decreased miR-29b-3p expression. However, miR-29b-3p overexpression repressed TGF-β1-induced collagen I protein and alpha-smooth muscle actin (α-SMA) expression. As expected, its overexpression also reduced cell viability. We found that miR-29b-3p directly bind to signal transducer and activator of transcription 3 (STAT3) and suppressed its expression. Our study demonstrates that low expression of miR-29b-3p may contribute to the progression of liver fibrosis by suppressing STAT3.


2020 ◽  
Author(s):  
Lin Xu ◽  
Qingying Song ◽  
Zhanghong Ouyang ◽  
Xiangyan Zhang ◽  
Cheng Zhang

Abstract Pneumonia accounts for approximately 15% mortalities in adolescents worldwide. MicroRNAs (miRNAs) regulate numerous diseases including pneumonia. miRNA and mRNA expression levels were detected by real time polymerase chain reaction (RT-qPCR). Protein expression levels were determined by enzyme-linked immunosorbent assay (ELISA) and western blot. The interaction between phosphatase and tensin homolog on chromosome ten (PTEN) and miR-103a-3p was explored by dual luciferase reporter assay. Cell viability and cell apoptosis were detected by cell Counting Kit-8 (CCK-8) and flow cytometry. Herein, we discovered that PTEN was decreased and miR-103a-3p was overexpressed in Ana-1 cells of in vitro pneumonia model. miR-103a-3p downregulated the expression levels of PTEN. AntagomiR-103a-3p reversed the increased cell apoptosis and decreased cell viability and inflammatory cytokine expression levels (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6) induced by LPS in Ana-1 cells by PTEN. AntagomiR-103a-3p inhibited the activation of PTEN/PI3K/AKT/NF-κB signaling pathway induced by LPS in Ana-1 cells. Taken together, our findings exhibited that miR-103a-3p attenuated LPS induced pneumonia by blocking the activation of PTEN/PI3K/AKT/NF-κB signaling pathway and the following cell apoptosis as well as release of proinflammatory cytokines, suggesting that miR-103a-3p might serve as a novel therapeutic target for the treatment of pneumonia.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xinguo Li ◽  
Hang Zhao ◽  
Jihui Liu ◽  
Jing Tong

Intracranial aneurysm (IA) is vascular enlargement occurred on the wall of cerebral vessels and can result in fatal subarachnoid hemorrhage when ruptured. Recent studies have supported the important role of long non-coding RNAs (lncRNAs) in IA treatment. This study identified functional significance of lncRNA myocardial infarction associated transcript (MIAT) in IA. Myocardial infarction associated transcript and ectodermal-neural cortex 1 (ENC1) expression was detected by reverse transcription quantitative polymerase chain reaction. Cell counting kit 8 assay flow cytometry were conducted to detect cell viability and apoptosis of endothelial cells in IA. The interaction among MIAT, ENC1, and myelocytomatosis oncogene (MYC) was analyzed by RNA pull down, RNA immunoprecipitation assay, chromatin immunoprecipitation assay, and dual luciferase reporter assay. Intracranial aneurysm was induced by ligating the left carotid artery and the bilateral posterior branch of the renal artery in rats for studying the role of MIAT and ENC1 in vivo. Myocardial infarction associated transcript and ENC1 were upregulated in IA. Endothelial cells in IA presented a decreased cell viability and an increased apoptotic rate. Myocardial infarction associated transcript could regulate the expression of ENC1, and MYC could bind to the promoter region of ENC1. High expression of MIAT increased endothelial cell apoptosis and vascular endothelial injury, while MIAT knockdown was identified to reduce the risk of IA both in vitro and in vivo through regulating ENC1. To sum up, MIAT silencing is preventive for IA occurrence by decreasing the MYC-mediated ENC1 expression, which represents a novel therapeutic target for IA.


Sign in / Sign up

Export Citation Format

Share Document