scholarly journals Exploration of the Potential Mechanism of Tao Hong Si Wu Decoction for the Treatment of Breast Cancer Based on Network Pharmacology and In Vitro Experimental Verification

2021 ◽  
Vol 11 ◽  
Author(s):  
Shi Huang ◽  
Yan Chen ◽  
Lingyu Pan ◽  
Changyi Fei ◽  
Ni Wang ◽  
...  

BackgroundTao Hong Si Wu Decoction (THSWD) is a well-known traditional Chinese medicine used clinically alone or combined with drugs to treat breast cancer. However, there has been no study to date on the underlying mechanisms of its therapeutic effects.ObjectivesTo explore the potential mechanism of THSWD for the treatment of breast cancer using network pharmacology and experimental research.MethodsThe active ingredients of THSWD were screened according to Lipinski’s rule of five based on the 107 ingredients of THSWD identified by UPLC-Q-TOF-MSE. The targets of THSWD and breast cancer from multiple databases were collected, and a Compound-Target-Pathway network based on protein-protein interaction (PPI) was constructed. Gene ontology (GO) analysis and KEGG pathway analysis were performed via the DAVID server. Molecular docking studies verified the selected key ingredients and key targets. The results of network pharmacology were verified by in vitro experiments. Including the effects of THSWD drug-containing rat serum (THSWD serum) on cell proliferation, and on the targets HRAS, MAPK1, AKT1, GRB2, and MAPK14 were assayed by RT-qPCR and Western blot assays.ResultsIn total, 27 active ingredients including 8 core components, were obtained from 107 ingredients and 218 THSWD target genes for the treatment of breast cancer were identified. THSWD is active in the treatment of breast cancer by targeting Ras, FoxO, PI3K-Akt and other signaling pathways. MCF-7 and MDA-MB-231 cell proliferation was inhibited by THSWD serum in a time and concentration dependent manner. THSWD could regulated the RNA and protein expression of core targets HRAS, MAPK1, AKT1, GRB2, and MAPK14 for treatment of breast cancer.ConclusionThe results of network pharmacology study showed that THSWD is active against breast cancer by intervening with multiple targets and pathways. Luteolin, kaempferol, senkyunolide E, and other 8 compounds may be the core active ingredients of THSWD in the treatment of breast cancer. THSWD treatment of breast cancer may be related to targeting Ras, FoxO, PI3K-Akt, and other signal pathways associated with the core targets HRAS, MAPK1, AKT1, GRB2, and MAPK14.

2020 ◽  
Author(s):  
Xiumei Zhao ◽  
Tongxing Wang ◽  
Qiang Jia ◽  
Luyao Wang ◽  
Cheng Tan ◽  
...  

Abstract Background: Traditional Chinese medicine (TCM) comprises a unique theoretical system developed over thousands of years. The previous study reported that Ruanjian Sanjie (RJSJ) exerts anti-tumor effects by inducing cell apoptosis. However, the mechanism is not clear. Methods: In this study, we investigated the possible mechanism by the strategy of combining network pharmacology analysis with experiment (in vitro and in vivo). First, four kinds of breast cancer cell lines were used to conduct proliferation, apoptosis and cell cycle analysis. Secondly, to study pathophysiological processes of breast cancer at the molecular network level, we for the first time constructed an “integrated apoptosis module network of breast cancer” by assembling the regulatory relationships of canonical apoptosis signaling pathways. Through the strategy of combining network analysis and experiments, we analyzed the main mechanism of RJSJ in breast cancer and screened out the core genes. We further studied the inhibitory effect of RJSJ combined with carboplatin (CBP) in vivo. Finally, the synergistic effect of RJSJ and CBP were analyzed and the potential active components in RJSJ were predicted.Results: This study demonstrated that RJSJ could significantly inhibit breast cancer cell proliferation and induce apoptosis in a concentration-dependent manner. The primary mechanism of RJSJ in the treatment of breast cancer was pro-apoptotic. The core apoptosis genes regulated by RJSJ were cIAP1/2 and XIAP. We also found that RJSJ in combination with CBP tended to synergistically induce apoptosis, which might mainly be achieved through the regulation of multiple targets and pathways. Alexandrin (BX05, XKC02, SCG01), baicalin (BX22), guanosine (BX32), arjunglucoside I (XKC10) etc. were predicted as potential active components.Conclusions: These findings provide the rationale for exploring the therapeutic effects of RJSJ against breast cancer and providing a bridge for the combined use of Chinese and Western medicine.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bin Wang ◽  
Yang Liu ◽  
Jianhui Sun ◽  
Nailin Zhang ◽  
Xiaojia Zheng ◽  
...  

Introduction. Network pharmacology is in line with the holistic characteristics of TCM and can be used to elucidate the complex network of interactions between disease-specific genes and compounds in TCM herbal medicines. Here, we investigate the pharmacological mechanism of Xiaokui Jiedu decoction (XJD) for the treatment of ulcerative colitis (UC). Methods. The Computational Systems Biology Laboratory Platform (TCMSP) database was searched and screened for the active ingredients of all drugs in XJD. The Uniport database was used to retrieve possible gene targets for the therapeutic effects of XJD. GeneCards, PharmGKB, TTD, and OMIM databases were used to retrieve XJD-related gene targets. A herb-compound-protein network and a protein-protein interaction (PPI) network were constructed, and hub genes were screened for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, molecular docking was performed to validate the interrelationship between disease target proteins and active drug components. Results. A total of 135 XJD potential action targets, 5097 UC-related gene targets, and 103 XJD-UC intersection gene targets were screened. The hub gene targets of XJD that exert therapeutic effects on UC are RB1, MAPK1, TP53, JUN, NR3C1, MAPK3, and ESR1. GO enrichment analysis showed 741 biofunctional enrichments, and KEGG enrichment analysis showed 124 related pathway enrichments. Molecular docking showed that the active components of XJD (β-sitosterol, kaempferol, formononetin, quercetin, and luteolin) showed good binding activities to five of the six hub gene targets. Discussion. The active ingredients of XJD (β-sitosterol, kaempferol, formononetin, quercetin, and luteolin) may regulate the inflammatory and oxidative stress-related pathways of colon cells during the course of UC by binding to the hub gene targets. This may be a potential mechanism of XJD in the treatment of UC.


2021 ◽  
Author(s):  
zhaotao wang ◽  
yongping Li ◽  
minyi liu ◽  
danmin chen ◽  
yunxiang ji ◽  
...  

Abstract BackgroundGlioblastoma (GBM) is a tumor of the central nervous system carries an extremely poor prognosis. Unfortunately, it also is the most frequently encountered tumor in this region. These tumors arise from glioblastoma stem cells (GSCs), which are glioma cells that are known to possess high degrees of stemness. GBM invades through the process of EMT, which features loss of cell differentiation and polarity. Survivin is a type of apoptotic inhibitor that has been characterized in several malignancies such as glioma. Normal tissues rarely express survivin. On the other hand, 3-benzyl-5-((2-nitrophenoxy) methyl) dihydrofuran-2(3H)-one (3BDO) represents an autophagy inhibitor and activates the mTOR pathway. It has been reported that 3BDO shows anti-cancer activities in lung carcinoma. However, the effects of 3BDO on GBM reminds unknown. Therefore, the purpose of this study was to explore the role and molecular mechanisms that 3BDO mediates in GBM.MethodCCK-8 experiments and clone formation assay were performed to detect the cell proliferation. Transwell assay was conducted to examined cell migration and invasion. Western blotting and immunofluorescence staining was used to analyze protein expression levels. Xenograft mouse model was used to evaluate the effect of 3BDO in vivo.ResultsWe found that 3BDO inhibited U87 and U251 cell proliferation in a dose-dependent manner. Additonally, 3BDO decreased the sphere formation and stemness markers (sox2, nestin and CD133) in GSCs. 3BDO also inhibited migration, invasion and suppressed EMT markers (N-cadherin, vimentin and snail) in GBM cells. Moreover, we found that 3BDO downregulated survivin expression of survivin both in GBM cells (U87, U251) and GSCs. Furthermore, overexpression of survivin reduced the therapeutic effects of 3BDO on GBM cell EMT, invasion, migration and proliferation, as well as decreased stemness in GSCs. Finally, we demonstrated that 3BDO inhibited tumor growth in a tumor xenograft mouse model constructed using U87 cells. Similar to the in vitro findings, 3BDO diminished suvivin expression, stemness and levels of EMT makers in vivo.Conclusionsour results demonstrated that 3BDO repressed GBM via downregulating survivin-mediated stemness and EMT both in vitro and in vivo.


2019 ◽  
Vol 26 (8) ◽  
pp. 727-738 ◽  
Author(s):  
Shu-Fu Lin ◽  
Jen-Der Lin ◽  
Chun-Nan Yeh ◽  
Yu-Tung Huang ◽  
Ting-Chao Chou ◽  
...  

Polo-like kinases (PLKs) are pivotal regulators of cell proliferation and cell survival; therefore, PLKs may be potential targets in the treatment of malignancy. The therapeutic effects of volasertib, a PLKs inhibitor for papillary and follicular thyroid cancer (known as well-differentiated thyroid cancer (WDTC)), were evaluated in this study. Volasertib inhibited cell proliferation in two papillary and two follicular thyroid cancer cell lines in a dose-dependent manner. Volasertib treatment reduced cells in the S phase and increased cells in the G2/M phase. Volasertib activated caspase-3 activity and induced apoptosis. Drug combinations of volasertib and sorafenib showed mostly synergism in four well-differentiated thyroid carcinoma cell lines in vitro. Volasertib treatment in vivo retarded the growth of a papillary thyroid tumor model. Furthermore, the combination of volasertib with sorafenib was more effective than a single treatment of either in a follicular thyroid cancer xenograft model. Promising safety profiles appeared in animals treated with either volasertib alone or volasertib and sorafenib combination therapy. These findings support volasertib as a potential drug for the treatment of patients with WDTC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nan Jiang ◽  
Hong Li ◽  
Yueshan Sun ◽  
Jing Zeng ◽  
Fei Yang ◽  
...  

Background:Sanguisorba Officinalis L. (SO) is a well-known traditional Chinese medicine (TCM), commonly applied to treat complex diseases, such as anticancer, antibacterial, antiviral, anti-inflammatory, anti-oxidant and hemostatic effects. Especially, it has been reported to exert anti-tumor effect in various human cancers. However, its effect and pharmacological mechanism on hepatocellular carcinoma (HCC) remains unclear.Methods: In this study, network pharmacology approach was applied to characterize the underlying mechanism of SO on HCC. Active compounds and potential targets of SO, as well as related genes of HCC were obtained from the public databases, the potential targets and signaling pathways were determined by protein-protein interaction (PPI), gene ontology (GO) and pathway enrichment analyses. And the compound-target and target-pathway networks were constructed. Subsequently, in vitro experiments were also performed to further verify the anticancer effects of SO on HCC.Results: By using the comprehensive network pharmacology analysis, 41 ingredients in SO were collected from the corresponding databases, 12 active ingredients screened according to their oral bioavailability and drug-likeness index, and 258 potential targets related to HCC were predicted. Through enrichment analysis, SO was found to show its excellent therapeutic effects on HCC through several pathways, mainly related to proliferation and survival via the EGFR, PI3K/AKT, NFκB and MAPK signaling pathways. Additionally, in vitro, SO was found to inhibit cell proliferation, induce apoptosis and down-regulate cell migration and invasion in various HCC cells. Moreover, western blot analysis showed that SO treatment down-regulated the expression of p-EGFR, p-PI3K, p-AKT, p-NFκB and p-MAPK proteins in HepG2 cells. These results validated that SO exerted its therapeutic effects on HCC mainly by the regulation of cell proliferation and survival via the EGFR/MAPK and EGFR/PI3K/AKT/NFκB signaling pathways.Conclusion: Taken together, this study, revealed the anti-HCC effects of SO and its potential underlying therapeutic mechanisms in a multi-target and multi-pathway manner.


2020 ◽  
Author(s):  
Ji-ye Chen ◽  
Yong-jian Zhang ◽  
Yong-cheng Wang ◽  
Guo-feng Zhou ◽  
Jin-long Yang ◽  
...  

Abstract Introduction: Guizhi decoction (GZD), a classical Chinese herbal formula, has been widely used to treat hypertension, but its underlying mechanisms remain elusive. The present study aimed to explore its therapeutic effects and potential mechanisms in the treatment of hypertension using network pharmacology and experimental validation.Methods: The active ingredients and corresponding targets were collected from Traditional Chinese Medicine Systems Pharmacology database and Analysis Platform (TCMSP). The targets related to hypertension were identified from multiple databases, and multiple networks were constructed to identify key compounds, hub targets, and main biological processes and pathways of GZD against hypertension. The Surflex-Dock software was used to validate the binding affinity between key targets and their corresponding active compounds. The Dahl salt-sensitive rat model was used to evaluate the therapeutic effects of GZD on hypertension. Results: A total of 112 active ingredients, 222 targets of GZD and 341 hypertension- related targets were obtained. Furthermore, 56 overlapping targets were identified, five of which were determined as the hub targets to perform experimental verification, including interleukin 6 (IL-6), C-C motif chemokine 2 (CCL2), IL-1β, matrix metalloproteinase 2(MMP-2), and MMP9. Pathway enrichment results indicated that 56 overlapping targets mainly enriched in several inflammation pathways such as the tumor necrosis factor (TNF) signaling pathway, toll-like receptor (TLR) signaling pathway and nuclear factor kappa-B (NF-κB) signaling pathway. Molecular docking confirmed that most active compounds of GZD showed tight binding ability with the key targets. Experimental results demonstrated that compared with the group fed a high-salt diet in this study, the GZD improved blood pressure, reduced the area of cardiac fibrosis, and inhibited the expression of IL6, CCL2, IL1β, MMP2 and MMP9 in rats.Conclusions: The potential mechanism of the therapeutic effect of GZD on hypertension may be attributed to the regulation of cardiac inflammation and fibrosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Ba ◽  
Ying Huang ◽  
Pan Shen ◽  
Yao Huang ◽  
Hui Wang ◽  
...  

Background: Wutou Decoction (WTD), as a classic prescription, has been generally used to treat rheumatoid arthritis (RA) for two thousand years in China. However, the potential protective effects of WTD on rheumatoid arthritis and its possible mechanism have rarely been reported.Purpose: The aim of this study was to explore the possible mechanism of WTD against RA and a promising alternative candidate for RA therapy.Methods: A model of collagen-induced arthritis (CIA) was constructed in rats to assess the therapeutic effects of WTD. Histopathological staining, immunofluorescence, and western blotting of synovial sections were conducted to detect the antiangiogenic effects of WTD. Then, cell viability assays, flow cytometry, scratch healing assays, and invasion assays were conducted to explore the effects of WTD on MH7A human fibroblast-like synoviocyte (FLS) cell proliferation, apoptosis, migration, and invasion in vitro. The ability of WTD to induce blood vessel formation after MH7A cell and human umbilical vein endothelial cell line (HUVEC) coculture with WTD intervention was detected by a tube formation assay. The mechanisms of WTD were screened by network pharmacology and confirmed by in vivo and in vitro experiments.Results: WTD ameliorated the symptoms and synovial pannus hyperplasia of CIA rats. Treatment with WTD inhibited MH7A cell proliferation, migration, and invasion and promoted MH7A apoptosis. WTD could inhibit MH7A cell expression of proangiogenic factors, including VEGF and ANGI, to induce HUVEC tube formation. Furthermore, the PI3K-AKT-mTOR-HIF-1α pathway was enriched as a potential target of WTD for the treatment of RA through network pharmacology enrichment analysis. Finally, it was confirmed in vitro and in vivo that WTD inhibits angiogenesis in RA by interrupting the PI3K-AKT-mTOR-HIF-1α pathway.Conclusion: WTD can inhibit synovial hyperplasia and angiogenesis, presumably by inhibiting the migration and invasion of MH7A cells and blocking the production of proangiogenic effectors in MH7A cells. The possible underlying mechanism by which WTD ameliorates angiogenesis in RA is the PI3K-AKT-mTOR-HIF-1α pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yirixiati Aihaiti ◽  
Yong Song Cai ◽  
Xiadiye Tuerhong ◽  
Yan Ni Yang ◽  
Yao Ma ◽  
...  

Rheumatoid arthritis is a chronic autoimmune disease characterized by persistent hyperplasia of the synovial membrane and progressive erosion of articular cartilage. Disequilibrium between the proliferation and death of RA fibroblast-like synoviocytes (RA-FLSs) is the critical factor in progression of RA. Naringin has been reported to exert anti-inflammatory and antioxidant effect in acute and chronic animal models of RA. However, the therapeutic effect and underlying mechanisms of naringin in human RA-FLS remain unclear. Based on network pharmacology, the corresponding targets of naringin were identified using SwissTargetPrediction database, STITCH database, and Comparative Toxicogenomics Database. Deferentially expressed genes (DEGs) in RA were obtained from the GEO database. The protein–protein interaction (PPI) networks of intersected targets were constructed using the STRING database and visualized using Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, and the pathways directly related to pathogenesis of RA were integrated manually. Further, in vitro studies were carried out based on network pharmacology. 99 target genes were intersected between targets of naringin and DEGs. The PPI network and topological analysis indicated that IL-6, MAPK8, MMP-9, TNF, and MAPK1 shared the highest centrality among all. GO analysis and KEGG analysis indicated that target genes were mostly enriched in (hsa05200) pathways in cancer, (hsa05161) hepatitis B, (hsa04380) osteoclast differentiation, (hsa04151) PI3K-Akt signaling pathway, and (hsa05142) Chagas disease (American trypanosomiasis). In vitro studies revealed that naringin exposure was found to promote apoptosis of RA-FLS, increased the activation of caspase-3, and increased the ratio of Bax/Bcl-2 in a dose-dependent manner. Furthermore, treatment of naringin attenuated the production of inflammatory cytokines and matrix metalloproteinases (MMPs) in TNF-ɑ–induced RA-FLS. Moreover, treatment of naringin inhibited the phosphorylation of Akt and ERK in RA-FLS. Network pharmacology provides a predicative strategy to investigate the therapeutic effects and mechanisms of herbs and compounds. Naringin inhibits inflammation and MMPs production and promotes apoptosis in RA-FLS via PI3K/Akt and MAPK/ERK signaling pathways.


2021 ◽  
Vol 16 (12) ◽  
pp. 1934578X2110672
Author(s):  
Jialin Wei ◽  
Zhiyuan Sun ◽  
Li Shi ◽  
Shaodan Hu ◽  
Da Liu ◽  
...  

This study elucidated the potential molecular mechanism of chrysin in hepatocellular carcinoma (HCC) treatment using network pharmacology and in vitro experiments. Chrysin and candidate targets of HCC were obtained from the TCMSP and DrugBank databases, followed by mapping and screening of chrysin and HCC targets to identify the core targets of chrysin in HCC treatment. The interaction of chrysin and its targets, including CDK1, CDK5, as well as MMP9, were evaluated by molecular docking. The STRING database and Cytoscape (version 3.8.2) software were used to construct protein interactions and component-target networks of the core targets. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis of the core target genes were performed using the DAVID database. Network pharmacology results showed that chrysin treatment of HCC was mainly related to cell proliferation and cell cycle. Accordingly, the cell counting kit-8 method and flow cytometry were used to detect the cell viability and cell cycle of hepatocarcinoma cells HCCLM3 and BEL-7402 in vitro. A total of 142 compound targets of chrysin, 12,179 HCC-related targets, and 116 intersecting targets were screened. The first 20 GO biological annotations of 17 core targets and the first 20 KEGG pathways mainly involved cell proliferation and cell cycle. In vitro experiments showed that chrysin inhibits the proliferation of human hepatocarcinoma cells (HCCLM3 and BEL-7402) in a dose-dependent manner. Moreover, chrysin induced cell cycle arrest in HCCLM3 and BEL-7402 cells in the G2 phase, and the expression was downregulated of cyclin-dependent kinases (CDKs), CDK2 and CDK4. Chrysin can offset HCC mainly by regulating the cell cycle and inhibiting cell proliferation. The network pharmacology results were verified, providing the basis for further study on the mechanism of chrysin intervention in HCC.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Sign in / Sign up

Export Citation Format

Share Document