scholarly journals Ribosomal Protein L23 Drives the Metastasis of Hepatocellular Carcinoma via Upregulating MMP9

2021 ◽  
Vol 11 ◽  
Author(s):  
Minli Yang ◽  
Yujiao Zhou ◽  
Haijun Deng ◽  
Hongzhong Zhou ◽  
Shengtao Cheng ◽  
...  

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. Tumor metastasis is one of the major causes of high mortality of HCC. Identifying underlying key factors contributing to invasion and metastasis is critical to understand the molecular mechanisms of HCC metastasis. Here, we identified RNA binding protein L23 (RPL23) as a tumor metastasis driver in HCC. RPL23 was significantly upregulated in HCC tissues compared to adjacent normal tissues, and closely related to poor clinical outcomes in HCC patients. RPL23 depletion inhibited HCC cell proliferation, migration and invasion, and distant metastasis. Mechanistically, RPL23 directly associated with 3’UTR of MMP9, therefore positively regulated MMP9 expression. In conclusion, we identified that RPL23 might play an important role in HCC metastasis in an MMP9-dependent manner and be a potential therapeutic target for HCC tumorigenesis and metastasis.

2021 ◽  
Author(s):  
Juan Chen ◽  
Fan Li ◽  
Minli Yang ◽  
Yujiao Zhou ◽  
Haijun Deng ◽  
...  

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally and tumor metastasis is one of the major causes of high mortality. To identify novel molecules contributing to HCC metastasis is critical to understanding the underlining mechanism of cancer metastasis. Here, combining the analyze based on published database and liver tissues from HCC patients, we identified that RNA binding protein L23 (RPL23) as a tumor metastasis driver in HCC. RPL23 was elevated in HCC and closely related to poor clinical outcomes. Furthermore, RPL23 depletion inhibited HCC cell proliferation, migration and invasion, while RPL23 overexpression promoted HCC cell metastasis. Mechanistically, RPL23 positively regulated MMP9 expression by stabilizing its mRNA. And increased MMP9 is involved in RPL23-mediated HCC metastasis. Importantly, RPL23 silencing reduced tumor growth and metastasis in vivo. In summary, we identified that RPL23 play an important role in HCC metastasis in an MMP9-dependent manner and may be a novel potential therapeutic target for HCC tumorigenesis and metastasis.


2020 ◽  
Author(s):  
Xinxing Wang ◽  
Wei Sheng ◽  
Tao Xu ◽  
Jiawen Xu ◽  
Juntao Chen ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been shown to have critical regulatory roles in tumor biology, whereas their contributions in hepatocellular carcinoma (HCC) still remains enigmatic. The purpose of this study was to investigate the molecular mechanisms involved in hsa_circ_0110102 in the occurrence and development of HCC. Results hsa_circ_0110102 was significantly down-regulated in HCC cell lines and tissues, low hsa_circ_0110102 expression levels were associated with poor prognosis. Knockdown hsa_circ_0110102 significantly inhibited cell proliferation, migration and invasion. In addition, the interaction between hsa_circ_0110102 and miR-580-5p was predicted and verified by luciferase assay and RNA pull-down, indicating that hsa_circ_0110102 function as sponge of miR-580-5p. Moreover, miR-580-5p which could directly bind to the 3’-UTR of CCL2 and induce its expression, then active the COX-2/PGE2 pathway in macrophage via FoxO1 in p38 MAPK dependent manner. Furthermore, the Δ256 mutant of FoxO1 showed no activation effect. These results concluded that hsa_circ_0110102 act as a sponge for miR-580-5p and decreased CCL2 secretion in HCC cells, then inhibits pro-inflammatory cytokine release from activated macrophage by regulating the COX-2/PGE2 pathway. Conclusions These results indicating that hsa_circ_0110102 serves as a potential prognostic predictor or therapeutic target for HCC.


2007 ◽  
Vol 27 (15) ◽  
pp. 5365-5380 ◽  
Author(s):  
Virginie Dormoy-Raclet ◽  
Isabelle Ménard ◽  
Eveline Clair ◽  
Ghada Kurban ◽  
Rachid Mazroui ◽  
...  

ABSTRACT A high expression level of the β-actin protein is required for important biological mechanisms, such as maintaining cell shape, growth, and motility. Although the elevated cellular level of the β-actin protein is directly linked to the long half-life of its mRNA, the molecular mechanisms responsible for this effect are unknown. Here we show that the RNA-binding protein HuR stabilizes the β-actin mRNA by associating with a uridine-rich element within its 3′ untranslated region. Using RNA interference to knock down the expression of HuR in HeLa cells, we demonstrate that HuR plays an important role in the stabilization but not in the nuclear/cytoplasmic distribution of the β-actin mRNA. HuR depletion in HeLa cells alters key β-actin-based cytoskeleton functions, such as cell adhesion, migration, and invasion, and these defects correlate with a loss of the actin stress fiber network. Together our data establish that the posttranscriptional event involving HuR-mediated β-actin mRNA stabilization could be a part of the regulatory mechanisms responsible for maintaining cell integrity, which is a prerequisite for avoiding transformation and tumor formation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhiping Fu ◽  
Xing Liang ◽  
Ligang Shi ◽  
Liang Tang ◽  
Danlei Chen ◽  
...  

AbstractPancreatic cancer is a highly lethal malignancy due to failures of early detection and high metastasis in patients. While certain genetic mutations in tumors are associated with severity, the molecular mechanisms responsible for cancer progression are still poorly understood. Synaptotagmin-8 (SYT8) is a membrane protein that regulates hormone secretion and neurotransmission, and its expression is positively regulated by the promoter of the insulin gene in pancreatic islet cells. In this study, we identified a previously unknown role of SYT8 in altering tumor characteristics in pancreatic cancer. SYT8 levels were upregulated in patient tumors and contributed towards increased cell proliferation, migration, and invasion in vitro and in vivo. Increased SYT8 expression also promoted tumor metastasis in an in vivo tumor metastasis model. Furthermore, we showed that SYT8-mediated increase in tumorigenicity was regulated by SIRT1, a protein deacetylase previously known to alter cell metabolism in pancreatic lesions. SIRT1 expression was altered by orphan nuclear receptor ERRα and troponin-1 (TNNI2), resulting in cell proliferation and migration in an SYT8-dependent manner. Together, we identified SYT8 to be a central regulator of tumor progression involving signaling via the SIRT1, ERRα, and TNNI2 axis. This knowledge may provide the basis for the development of therapeutic strategies to restrict tumor metastasis in pancreatic cancer.


2020 ◽  
Author(s):  
Xinxing Wang ◽  
Wei Sheng ◽  
Tao Xu ◽  
Jiawen Xu ◽  
Zhenhai Zhang

Abstract Background: Circular RNAs (circRNAs) have been shown to have critical regulatory roles in tumor biology, whereas their contributions in hepatocellular carcinoma (HCC) still remains enigmatic. The purpose of this study was to investigate the molecular mechanisms involved in hsa_circ_0110102 in the occurrence and development of HCC. Methods: The expression levels of hsa_circ_0110102 in HCC cell lines and tissues were estimated by RT-qPCR assay. The proliferation, migration, and invasion of HCC cells were determined by CCK-8 and transwell assay. The western blot and ELISA were employed to examine the related-protein and cytokine expression. The association between miR-580-5p and hsa_circ_0110102 or CCL2 was predicted and affirmed by dual-luciferase reporter assay and RNA pull-down.Results: hsa_circ_0110102 was significantly down-regulated in HCC cell lines and tissues, low hsa_circ_0110102 expression levels were associated with poor prognosis. Knockdown hsa_circ_0110102 significantly inhibited cell proliferation, migration and invasion. In addition, luciferase assay and RNA pull-down assay indicating that hsa_circ_0110102 function as sponge for miR-580-5p. Moreover, miR-580-5p which could directly bind to the 3’-UTR of CCL2 and induce its expression, then active the COX-2/PGE2 pathway in macrophage via FoxO1 in p38 MAPK dependent manner. Furthermore, the Δ256 mutant of FoxO1 showed no activation effect. Conclusion: hsa_circ_0110102 act as a sponge for miR-580-5p and decreased CCL2 secretion in HCC cells, then inhibits pro-inflammatory cytokine release from activated macrophage by regulating the COX-2/PGE2 pathway. These results indicating that hsa_circ_0110102 serves as a potential prognostic predictor or therapeutic target for HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Li-Man Li ◽  
Chang Chen ◽  
Ruo-Xi Ran ◽  
Jing-Tao Huang ◽  
Hui-Lung Sun ◽  
...  

The clinical outcomes of hepatocellular carcinoma (HCC) remain dismal. Elucidating the molecular mechanisms for the progression of aggressive HCC holds the promise for developing novel intervention strategies. The transactivation response element RNA-binding protein (TRBP/TARBP2), a key component of microRNA (miRNA) processing and maturation machinery has been shown to play conflicting roles in tumor development and progression. We sought to investigate the expression of TARBP2 in HCC using well-characterized HCC cell lines, patient-derived tissues and blood samples. Additionally, the potential prognostic and diagnostic value of TARBP2 in HCC were analyzed using Kaplan-Meier plots and ROC curve. Cell counting kit‐8 (CCK‐8), wound healing and transwell assays examined the ability of TARBP2 to induce cell proliferation, migration, and invasion in HCC cell lines. RNA sequencing was applied to identify the downstream elements of TARBP2. The interaction of potential targets of TARBP2, miR‐145 and serpin family E member 1 (SERPINE1), was assessed using luciferase reporter assay. TARBP2 expression was down-regulated in HCC cell lines relative to normal hepatocyte cells, with a similar pattern further confirmed in tissue and blood samples. Notably, the loss of TARBP2 was demonstrated to promote proliferation, migration, and invasion in HCC cell lines. Interestingly, the reduction of TARBP2 was shown to result in the upregulation of SERPINE1, also known as plasminogen activator inhibitor (PAI-1), which is a vital gene of the HIF-1 signaling pathway. Knockdown of SERPINE1 rescued the TARBP2-lost phenotype. Moreover, TARBP2 depletion induced the upregulation of SERPINE1 through reducing the processing of miR-145, which directly targets SERPINE1. Finally, overexpression of miR-145 repressed SERPINE1 and rescued the functions in sh-TARBP2 HCC cells. Our findings underscore a linear TARBP2-miR-145-SERPINE1 pathway that drives HCC progression, with the potential as a novel intervention target for aggressive HCC.


2019 ◽  
Vol 20 (10) ◽  
pp. 1081-1089
Author(s):  
Weiwei Ke ◽  
Zaiming Lu ◽  
Xiangxuan Zhao

Human NIN1/RPN12 binding protein 1 homolog (NOB1), an RNA binding protein, is expressed ubiquitously in normal tissues such as the lung, liver, and spleen. Its core physiological function is to regulate protease activities and participate in maintaining RNA metabolism and stability. NOB1 is overexpressed in a variety of cancers, including pancreatic cancer, non-small cell lung cancer, ovarian cancer, prostate carcinoma, osteosarcoma, papillary thyroid carcinoma, colorectal cancer, and glioma. Although existing data indicate that NOB1 overexpression is associated with cancer growth, invasion, and poor prognosis, the molecular mechanisms behind these effects and its exact roles remain unclear. Several studies have confirmed that NOB1 is clinically relevant in different cancers, and further research at the molecular level will help evaluate the role of NOB1 in tumors. NOB1 has become an attractive target in anticancer therapy because it is overexpressed in many cancers and mediates different stages of tumor development. Elucidating the role of NOB1 in different signaling pathways as a potential cancer treatment will provide new ideas for existing cancer treatment methods. This review summarizes the research progress made into NOB1 in cancer in the past decade; this information provides valuable clues and theoretical guidance for future anticancer therapy by targeting NOB1.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Huan Lu ◽  
Guanlin Zheng ◽  
Xiang Gao ◽  
Chanjuan Chen ◽  
Min Zhou ◽  
...  

Abstract Background Propofol is a kind of common intravenous anaesthetic agent that plays an anti-tumor role in a variety of cancers, including ovarian cancer. However, the working mechanism of Propofol in ovarian cancer needs further exploration. Methods The viability and metastasis of ovarian cancer cells were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays. Flow cytometry was used to evaluate the cell cycle and apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the abundance of circular RNA vacuolar protein sorting 13 homolog C (circVPS13C) and microRNA-145 (miR-145). The target relationship between miR-145 and circVPS13C was predicted by circinteractome database and verified by dual-luciferase reporter assay, RNA-binding protein immunoprecipitation (RIP) assay and RNA-pull down assay. Western blot assay was used to detect the levels of phosphorylated extracellular regulated MAP kinase (p-ERK), ERK, p-MAP kinse-ERK kinase (p-MEK) and MEK, in ovarian cancer cells. Results Propofol treatment suppressed the viability, cell cycle and motility and elevated the apoptosis rate of ovarian cancer cells. Propofol up-regulated miR-145 in a dose-dependent manner. Propofol exerted an anti-tumor role partly through up-regulating miR-145. MiR-145 was a direct target of circVPS13C. Propofol suppressed the progression of ovarian cancer through up-regulating miR-145 via suppressing circVPS13C. Propofol functioned through circVPS13C/miR-145/MEK/ERK signaling in ovarian cancer cells. Conclusion Propofol suppressed the proliferation, cell cycle, migration and invasion and induced the apoptosis of ovarian cancer cells through circVPS13C/miR-145/MEK/ERK signaling in vitro.


Reports ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 17
Author(s):  
Vikrant Rai ◽  
Devendra K. Agrawal

Hepatocellular carcinoma (HCC), accounting for more than 90% of cases of primary liver cancer, is the third most common cause of cancer-related death worldwide. Chronic inflammation precedes the development of cirrhosis and HCC. TREM (triggering receptor expressed on myeloid cell)-1 is an inflammatory marker and amplifier of inflammation that signals through PI3K and ERK1/2 to activate transcription factors, resulting in increased secretion of pro-inflammatory cytokines, causing chronic inflammation and predisposing the liver to carcinogenesis. Thus, targeting TREM-1 in HCC might be a potential therapeutic target. A low level of vitamin D has been associated with chronic inflammation and poor prognosis in HCC. Thus, we evaluated the effect of vitamin D on TREM-1 expression in the HCC cell line. Additionally, the effects of high mobility group box-1, lipopolysaccharide, and transcription factor PU.1 on the expression of TREM-1 in normal liver cells and HCC cells have been investigated in the presence and absence of vitamin D. The results showed increased expression of TREM-1 in HCC cells and with IL-6, TNF-α, LPS, and rHMGB-1 and decreased expression with calcitriol. Calcitriol also attenuated the effect of IL-6, TNF-α, LPS, and rHMGB-1 on TREM-1. Calcitriol treatment attenuated the proliferation, migration, and invasion of HCC cells. These results (in vitro) provide molecular and biochemical evidence that calcitriol significantly attenuates the expression of mediators of inflammation, and thus might be used therapeutically together with conventional treatment to delay the progression of HCC. Additionally, the negative regulation of TREM-1 by PU.1 suggests PU.1 as a potential therapeutic target.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1178
Author(s):  
Suvesh Munakarmi ◽  
Juna Shrestha ◽  
Hyun-Beak Shin ◽  
Geum-Hwa Lee ◽  
Yeon-Jun Jeong

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide with limited treatment options. Biomarker-based active phenolic flavonoids isolated from medicinal plants might shed some light on potential therapeutics for treating HCC. 3,3′-diindolylmethane (DIM) is a unique biologically active dimer of indole-3-carbinol (I3C), a phytochemical compound derived from Brassica species of cruciferous vegetables—such as broccoli, kale, cabbage, and cauliflower. It has anti-cancer effects on various cancers such as breast cancer, prostate cancer, endometrial cancer, and colon cancer. However, the molecular mechanism of DIM involved in reducing cancer risk and/or enhancing therapy remains unknown. The aim of the present study was to evaluate anti-cancer and therapeutic effects of DIM in human hepatoma cell lines Hep3B and HuhCell proliferation was measured with MTT and trypan blue colony formation assays. Migration, invasion, and apoptosis were measured with Transwell assays and flow cytometry analyses. Reactive oxygen species (ROS) intensity and the loss in mitochondrial membrane potential of Hep3B and Huh7 cells were determined using dihydroethidium (DHE) staining and tetramethylrhodamine ethyl ester dye. Results showed that DIM significantly suppressed HCC cell growth, proliferation, migration, and invasion in a concentration-dependent manner. Furthermore, DIM treatment activated caspase-dependent apoptotic pathway and suppressed epithelial–mesenchymal transition (EMT) via ER stress and unfolded protein response (UPR). Taken together, our results suggest that DIM is a potential anticancer drug for HCC therapy by targeting ER-stress/UPR.


Sign in / Sign up

Export Citation Format

Share Document