scholarly journals Physiological and Expressional Regulation on Photosynthesis, Starch and Sucrose Metabolism Response to Waterlogging Stress in Peanut

2021 ◽  
Vol 12 ◽  
Author(s):  
Ruier Zeng ◽  
Tingting Chen ◽  
Xinyue Wang ◽  
Jing Cao ◽  
Xi Li ◽  
...  

Waterlogging has negative effects on crop yield. Physiological and transcriptome data of two peanut cultivars [Zhongkaihua 1 (ZKH 1) and Huayu 39 (HY 39)] were studied under normal water supply and waterlogging stress for 5 or 10 days at the flowering stage. The results showed that the main stem height, the number of lateral branches, lateral branch length, and the stem diameter increased under waterlogging stress, followed by an increase in dry matter accumulation, which was correlated with the increase in the soil and plant analysis development (SPAD) and net photosynthetic rate (Pn) and the upregulation of genes related to porphyrin and chlorophyll metabolism and photosynthesis. However, the imbalance of the source–sink relationship under waterlogging was the main cause of yield loss, and waterlogging caused an increase in the sucrose and soluble sugar contents and a decrease in the starch content; it also decreased the activities of sucrose synthetase (SS) and sucrose phosphate synthetase (SPS), which may be due to the changes in the expression of genes related to starch and sucrose metabolism. However, the imbalance of the source–sink relationship led to the accumulation of photosynthate in the stems and leaves, which resulted in the decrease of the ratio of pod dry weight to total dry weight (PDW/TDW) and yield. Compared with ZKH 1, the PDW of HY 39 decreased more probably because more photosynthate accumulated in the stem and leaves of HY 39 and could not be effectively transported to the pod.

1978 ◽  
Vol 58 (1) ◽  
pp. 199-206 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. B. DAYNARD

Kernel development was studied in the maize (Zea mays L.) hybrids United-H106 and Funk’s G-4444, grown in a controlled-environment growth room. A method was employed in which husks were excised, and kernels were removed from the same set of ears at several subsequent sampling dates. This method did not affect the dry matter accumulation of the remaining kernels. Basal kernels (kernel numbers 6–15 in the row) and tip kernels (kernel numbers 31–40) were removed at 2-day intervals during the period from 10 to 20 days postsilking. Dry weight, ethanol-soluble sugar content, and starch content were determined for each sample. Accumulation of dry matter in the tip kernels ceased in a fraction of the United-H106 ears at the onset of the period of linear tip-kernel dry matter accumulation. Only small differences were observed in sugar content between growing and non-growing tip kernels of ears of United-H106. Starch appeared to continue to accumulate in kernels in which dry matter had ceased to accumulate. Except for a delay of approximately 2 days, the pattern of development of tip kernels in Funk’s G-4444 was similar to that of kernels at the base.


2002 ◽  
Vol 29 (7) ◽  
pp. 805 ◽  
Author(s):  
María Dolores Fernández ◽  
Wilmer Tezara ◽  
Elizabeth Rengifo ◽  
Ana Herrera

We evaluated the effects of an elevated [CO2] on photosynthesis and growth of cassava plants grown in open-top chambers with an adequate supply of water and N and a sufficient rooting volume. Cassava plants (Manihot esculenta Crantz. cv. Motilona) showed higher photosynthetic rates (Pn) when grown and measured at elevated [CO2] (680 µmol mol-1) than when grown and measured at ambient [CO2] (480 µmol mol-1). No downregulation of photosynthesis due to elevated [CO2] was found, since carboxylation efficiency increased after 220 d in spite of a decrease in leaf soluble protein, Rubisco, and leaf N content. Soluble sugar and starch contents decreased with time under elevated [CO2], the decrease in starch content coinciding with the beginning of the increase in root mass. Canopy Pn by leaf area decreased with time under elevated [CO2] but, when canopy Pn was expressed by ground area, higher and constant rates were observed, suggesting a higher productivity in plants grown at elevated [CO2]. The absence of differences between growth [CO2] in root : shoot ratio observed suggests that elevated [CO2], while causing increases in the shoot as well as the root, did not affect the pattern of biomass allocation. Acclimation responses of gas exchange parameters changed during the experiment. The absence of downregulation of photosynthesis was associated with a decrease in leaf sugar and starch contents of plants grown at elevated [CO2], which suggests a favourable source/sink relationship.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 648d-648
Author(s):  
Jack W. Buxton ◽  
Donna Switzer ◽  
Guoqiang Hou

Marigold seedlings, 3 weeks old, were grown in natural light growth chambers at 3 day/night temperature regimes, 8°N/16°D, 13°N/20°D and 18°N/24°D, in a factorial combination with ambient and 1000-1500 ppm CO2. Seedlings were harvested at regular intervals during a 24 hr period and were analyzed for soluble sugars (reducing sugars and sucrose) and starch. Neither temperature nor CO2 concentration affected the accumulation of soluble sugars or starch during the day or night. The soluble sugar concentration ranged from 3% of dry weight at sunrise to 6% at mid-day; the concentration changed little during the night. Light intensity was different during replications of the experiment. Increased light intensity appeared to cause a slight increase in the soluble sugars maintained by the seedling during the day. Accumulated starch increased 6% to 8% from sunrise to late afternoon. Preliminary results indicate that light intensity greatly affected the concentration of starch. On the higher light intensity day, starch accumulated to a maximum of 18% of dry weight; whereas on the lower light intensity day the maximum concentration was 10%. During the night following the lower light intensity day, the starch concentration decreased to approximately 3% by the end of the night; following a brighter day the starch content was 13% at the end of the night.


Author(s):  
Thắng Thanh Trần

Peanut is am essential legume and has many uses, such as producing oil, food, and fodder. However, with the negative effects of climate change, drought is one especially of the important issues that reduce the yield of peanut. Thus, in this study, the impact of drought stress on the peanut growth was investigated by using PEG-6000 to block pathways of water movement. The changes in morphological, physiological, and biochemical during the peanut growth under drought were analyzed. In the drought condition (-2 bar), the germination time of seed increased but the percentage of germination seeds decreased by approximately 50% compared to control. Besides, the shoot height, the number of leaves, the total leaf area, root length, and fresh weight were lower than that of control. Drought stress made the formation quickly of secondary xylem and phloem. Also, the process of lignification in the phloem parenchyma cell increased. These cell walls were much thicker than those in the control root. In the drought stress, the physiological and biochemical analysis showed that the content of chlorophyll a, leaf relative water content, and starch content reduced significantly in comparison to control. Similarly, the photosynthetic intensity, the activity of cytokinin, and gibberellin decreased. The reverse pattern can be seen in the content of carotenoid, epicuticular wax, proline, and total soluble sugar, respiratory intensity, the activity of catalase, auxin, and ABA activity.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1244
Author(s):  
Ruier Zeng ◽  
Lei Chen ◽  
Xinyue Wang ◽  
Jing Cao ◽  
Xi Li ◽  
...  

Waterlogging has a negative effect on peanut production, but few studies have focused on the relationship between the geographical origin and waterlogging tolerance of peanut varieties. To explore this problem, three different peanut ecotypes (Zhanhong 2, Zhongkaihua 1, and Huayu 39) were waterlogged for 5, 10, and 15 days at seedling stage (S), flowering and pegging stage (F), and pod-filling stage (P), respectively. The relationship between the ecotype and waterlogging tolerance was determined by analyzing the effects of waterlogging on dry matter accumulation, photosynthetic characteristics, yield, and the yield components of peanut. The soil and plant analysis development (SPAD), net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and intercellular CO2 concentration (Ci) values in leaves decreased under waterlogging stress, which led to a significant decrease in yield and yield components. The most noticeable effect of waterlogging stress appeared at the P stage and deleterious effects increased with an extension of the duration of waterlogging, where the yield loss was mainly attributed to the decrease in the number of total pods (TP) and the number of full pods (FP). Significant relationships were found between total dry weight (TDW), leaf dry weight (LDW), pod dry weight (PDW), TP, and FP, and the waterlogging stress tolerance index (WTI). Additionally, the waterlogging tolerance of peanut ecotypes is closely related to their geographic origin, where the most waterlogging-resistant ecotype was Zhanhong 2, followed by Zhongkaihua 1 and Huayu 39. Finally, breeding backgrounds and screening indices (SPAD, Pn, dry matter accumulation, and pod characteristics) beneficial to waterlogging tolerance breeding are suggested.


2019 ◽  
Vol 99 (5) ◽  
pp. 1041-1047 ◽  
Author(s):  
Fatemeh Soltani Nezhad ◽  
Hakimeh Mansouri

AbstractIn this study, polyploidy level was determined by flow cytometry analysis. The effect of polyploidy by colchicine treatment was examined on the growth parameters, malondealdehyde (MDA), as well as activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in response to different levels of salinity inDunaliella salina. The results of algal growth indicated that 3 M NaCl was the optimal concentration of salt, since the highest enhancement in fresh and dry weight, chlorophyll and carotenoids, soluble sugar, glycerol, protein and starch content was observed in comparison to other concentrations. The amount of these metabolites declined in the concentrations under optimum salinity. The least and highest amounts of MDA were observed at 1 and 4 M NaCl respectively. Polyploidy in optimum concentration of salt, caused further increment of the above growth parameters. In relation to this, in most cases, treatment of 0.1% colchicine was most effective. The beneficial effects of polyploidy in non-optimal conditions were also found in some parameters such as biomass, chlorophyll, carotenoids, proteins and starch. Furthermore, the activity of antioxidant enzymes CAT, SOD and POD showed a positive significant correlation with salt stress and these were maximized at 4 M NaCl. Polyploidy (especially colchicine 0.1%) affected activity of these antioxidant enzymes in some concentrations of salt. Overall, our results suggest that the microalgae has significantly different responses to salt stress based on ploidy levels.


2017 ◽  
Author(s):  
Fatemeh Soltani Nezhad ◽  
Hakimeh Mansouri

AbstractIn this study, effect of different percentages of polyploid cells of Dunaliella salina in culture medium, on growth and other biochemical parameters of algae under different salinity levels were investigated. The results indicated that concentration 3M NaCl is the optimal concentration of salt, since in this concentration, the highest enhancement in fresh and dry weight, chlorophyll and carotenoids, soluble sugar, glycerol, protein and starch content was observed in comparison with other concentrations. The amount of these metabolites declined in the concentrations under the optimum salinity. The least and highest amounts of MDA were observed at 1 and 4 M NaCl respectively. Polyploidy in optimum concentration of salt, caused further increment of the above growth parameters. In this relation, in most cases, treatment of 0.1% was more effective. The beneficial effects of polyploidy in non-optimal conditions were also found in some parameters such as biomass, chlorophyll, carotenoids, proteins and starch. The activity of antioxidant enzymes CAT, SOD and POD were maximum in 4 M NaCl. Polyploidy affected activity of these antioxidant enzymes in some concentrations of salt. Overall, our results suggest that the microalgae have significantly different responses to salt stress based on ploidy level of the algae.AbbreviationsAOSActive Oxygen ProductsCATCatalaseGPXGuaiacol PeroxidaseEDTAEthylene Diamine Tetraacetic AcidMDAMalondialdehydePMSFPhenyl Methanesulfonyl FluoridePVPPolyvinylpyrrolidoneSODSuperoxide Dismutase


2019 ◽  
Vol 47 (1) ◽  
pp. 32-38
Author(s):  
Sri Ayu Dwi Lestari ◽  
Andy Wijanarko ◽  
Dan Henny Kuntyastuti

The objective of this research was to determine growth and yield responses of three mungbean varieties to waterlogging duration. The experiment was conducted at a screenhouse of ILETRI, Malang, East Java, from October to December 2016 using Alfisol soil from Probolinggo, East Java. The experiment consisted of two factors that were laid out in a factorial randomized complete block design with three replications. The first factor was mungbean varieties, namely Sriti, Vima 1, and Vima 2. The second factor was waterlogging durations, namely 0, 2, 4, and 6 days. The waterlogging treatments started at 20 days after planting. Mungbean plants fertilized with 250 kg Phonska ha-1 at the time of planting. The results showed that waterlogging treatments had negative effects on growth of the three varieties, indicated by a reduction in stem dry weight and leaf dry weight of the plants. Sriti variety was tolerant to waterlogging, Vima 1 was moderate tolerant, and Vima 2 was sensitive.Keywords: Alfisol soil, Vigna radiata, waterlogging stress


1990 ◽  
Vol 114 (1) ◽  
pp. 93-99 ◽  
Author(s):  
P. K. Aggarwal ◽  
R. A. Fischer ◽  
S. P. Liboon

SUMMARYSource–sink balance was studied by imposing different canopy defoliation treatments on wheat crops grown in Los Banos (Philippines) in 1985/86 and 1986/87, Sonora (Mexico) in 1972/73 and 1974/75 and New Delhi (India) in 1987/88. The crops were grown in replicated trials with optimum cultural management. Six defoliation treatments were imposed at anthesis on all shoots in the canopy in an area ranging between 1·65 and 3·0 m2. Defoliation reduced dry weight in proportion to the reduction in percentage light interception. The number of grains per unit land area was reduced slightly, and in most cases not significantly, except when all leaves were removed. Despite reduction of leaf lamina area index to as low as 0·5, the decrease in grain yield was small. In particular, flag leaf removal led to a remarkably small reduction in grain yield. Grain nitrogen content in defoliated crops decreased much less than expected from the amount of N removed by defoliation. The slope of the relation between reduction in grain yield with defoliation and reduction in post-anthesis dry matter accumulation was 0·56, indicating moderate source limitation for grain filling. The crops at the hottest site, in the Philippines, were less limited by source than the other crops. It is suggested that selection for smaller flag leaves may be worthwhile for high-input wheat crops.


1977 ◽  
Vol 89 (3) ◽  
pp. 589-597 ◽  
Author(s):  
A. B. McAllan ◽  
R. H. Phipps

SummaryThe (early maturing) maize hybrid, Anjou 210, was sown on 1 May (1975) and 50000 (LD) and 150000 (HD) plants/ha established. Leaf, stem, ear and husk components of the shoots, and whole shoots were separately examined for changes in dry weight, soluble sugars, starch, hemicellulose and cellulose at regular intervals from 104 to 154 days after planting together with whole shoots after ensiling.Throughout the sampling period whole shoot and ear dry weights increased steadily whereas those of leaf and stem decreased in plants from both treatments.Total soluble sugar contents for plants grown at LD were at a maximum 104 days after planting compared with 125 days after planting for the HD crop. Immediately prior to ensiling whole shoot soluble sugar content was 74 and 93 g/kg D.M. for LD and HD treatments respectively.Small amounts of starch (g/kg D.M.) were found in stems (10–25), husks (40–80) and leaves (17–35) of plants grown at both densities. The starch content of the ear increased from 57 to 390 g/kg D.M. and 168 to 376 g/kg D.M. in plants grown at LD and HD respectively.For plants from both treatments hemicellulose contents of husks, leaves and whole shoots increased with age whereas those of stems decreased. Cellulose contents did not vary greatly over the growing season.On ensiling plants from both densities, total soluble sugars had virtually disappeared after only 3 days. Apparent losses (approximately 0·3 g/g), over a longer period of time, were observed in hemicellulose sugars and starch. Apparent increases were observed in cellulose contents of approximately 0·15 g/g.


Sign in / Sign up

Export Citation Format

Share Document