scholarly journals Longitudinal Survey of Fecal Microbiota in Healthy Dogs Administered a Commercial Probiotic

2021 ◽  
Vol 8 ◽  
Author(s):  
Susan Ciaravolo ◽  
Lina María Martínez-López ◽  
Richard J. N. Allcock ◽  
Andrew P. Woodward ◽  
Caroline Mansfield

The aim of this longitudinal microbiome study was to investigate the effects of a commercially available veterinary synbiotic product (Blackmore's® Paw DigestiCare 60™) on the fecal microbiome of healthy dogs using 16S rRNA gene microbial profiling. Fifteen healthy, privately-owned dogs participated in a 2-week trial administration of the product. Fecal samples were collected at different time points, including baseline (prior to treatment), during administration and after discontinuation of product. Large intra- and inter-individual variation was observed throughout the study, but microbiome composition at higher phylogenetic levels, alpha and beta diversity were not significantly altered after 2 weeks of probiotic administration, suggesting an absence of probiotic impact on microbial diversity. Administration of the synbiotic preparation did, however, result in transient increases in probiotic species from Enterococacceae and Streptococacceae families as well as an increase in Fusobacteria; with the fecal microbiota partially reverting to its baseline state 3-weeks after cessation of probiotic administration.

2020 ◽  
Vol 61 (4) ◽  
pp. 593-605
Author(s):  
Filippo Cendron ◽  
Giovanni Niero ◽  
Gabriele Carlino ◽  
Mauro Penasa ◽  
Martino Cassandro

AbstractThe aim of this study was to describe the fecal bacteria and archaea composition of Holstein-Friesian and Simmental heifers and lactating cows, using 16S rRNA gene sequencing. Bacteria and archaea communities were characterized and compared between heifers and cows of the same breed. Two breeds from different farms were considered, just to speculate about the conservation of the microbiome differences between cows and heifers that undergo different management conditions. The two breeds were from two different herds. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the most abundant phyla in all experimental groups. Alpha- and beta-diversity metrics showed significant differences between heifers and cows within the same breed, supported by principal coordinate analysis. The analysis of Holstein-Friesian fecal microbiome composition revealed 3 different bacteria families, 2 genera, and 2 species that differed between heifers and cows; on the other hand, Simmental heifers and cows differed only for one bacteria family, one archaeal genus, and one bacteria species. Results of the present study suggest that fecal communities of heifers and cows are different, and that fecal microbiome is maintained across experimental groups.


2021 ◽  
Author(s):  
◽  
Jason Couto

The fecal microbiome composition has been associated with reduced efficacy of cancer therapy and adverse side effects in humans, and chemotherapy has been shown to alter the gut microbiome. The relationship between microbiota and chemotherapy efficacy and tolerability has not been investigated in dogs. We aimed to evaluate changes in fecal microbial diversity during a cycle of CHOP chemotherapy in dogs with lymphoma and whether these changes correlated with adverse events or treatment response. Eighteen dogs with lymphoma were prospectively enrolled, and stool samples were acquired weekly for 6 weeks during CHOP. Fecal samples was analyzed via 16S rRNA amplicon sequencing as previously described. Treatment-associated differences in richness, alpha and beta diversity were determined through comparison to data from healthy controls (n = 26) using factorial ANOVA and PERMANOVA. Dogs with lymphoma had decreased fecal microbial diversity when compared with healthy controls at baseline and throughout treatment (p= 0.0002, 0.0003, 0.0001). Alpha and beta diversity did not significantly change in dogs throughout a cycle of CHOP chemotherapy (p = 0.520 and 0.995). Samples pre-treated with antibiotics were significantly less diverse (alpha and beta diversity) than untreated samples (p = 0.002, 0.0001 respectively). Dogs with lymphoma and fecal samples under the presence of antibiotics had higher levels of Escherchia species in their feces compared to normal dogs. The fecal microbiome of healthy dogs and dogs with lymphoma receiving CHOP is relatively stable over time, but dogs with lymphoma have reduced microbial diversity compared to healthy dogs before and during treatment. An increase in Proteobacteria abundance during treatment may be related to chemotherapy and/or antibiotic use.


2020 ◽  
Vol 98 (6) ◽  
Author(s):  
Brooke N Smith ◽  
Stephen A Fleming ◽  
Mei Wang ◽  
Ryan N Dilger

Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important disease, and the ingestion of soy isoflavones (ISF) may benefit PRRSV-infected pigs due to demonstrated anti-inflammatory and antiviral properties. The objective of this study was to quantify the effects of ISF consumption on fecal microbiome characteristics at different timepoints across a disease challenge and determine whether any changes, if present, elude to potential biological mechanisms for previously observed performance benefits. In total, 96 weaned barrows were group-housed in a Biosafety Level-2 containment facility and allotted to one of three experimental treatments that were maintained throughout the study: noninfected pigs receiving an ISF-devoid control diet (NEG, n = 24) and infected pigs receiving either the control diet (POS, n = 36) or that supplemented with total ISF in excess of 1,600 mg/kg (ISF, n = 36). Following a 7-d adaptation, pigs were inoculated intranasally with either a sham-control (phosphate-buffered saline) or live PRRSV (1 × 105 median tissue culture infectious dose[TCID]50/mL, strain NADC20). Fecal samples were collected from 48 individual pigs at pre-infection (−2 d post-inoculation [DPI]), peak-infection (10 DPI), and post-infection (144 DPI) timepoints. Extracted DNA was used to quantify fecal microbiota profiles via 16S bacterial rRNA sequencing. Differences in bacterial communities among diet groups were evaluated with principal coordinate analysis and permutational multivariate analysis of variance using UniFrac distance matrices based on both unweighted and weighted UniFrac distances using QIIME 2. All other data were analyzed by one-way ANOVA performed on square root transformations using R. Across all timepoints, only a few differences were observed due to ISF alone mainly in lowly abundant genera. The most notable differences observed were decreased relative abundance of Actinobacteria at 144 DPI between noninfected and infected treatments (P < 0.05), which is consistent with various dysbioses observed in other disease models. Our findings indicate that the differences present were mainly due to PRRSV-infection alone and not strongly influenced by diet, which implies that previously observed performance benefits conferred by dietary ISF are not likely due to the changes in microbiome composition.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262317
Author(s):  
Giovana S. Slanzon ◽  
Benjamin J. Ridenhour ◽  
Dale A. Moore ◽  
William M. Sischo ◽  
Lindsay M. Parrish ◽  
...  

Gastrointestinal disease (GI) is the most common illness in pre-weaned dairy calves. Studies have associated the fecal microbiome composition with health status, but it remains unclear how the microbiome changes across different levels of GI disease and breeds. Our objective was to associate the clinical symptoms of GI disease with the fecal microbiome. Fecal samples were collected from calves (n = 167) of different breeds (Holstein, Jersey, Jersey-cross and beef-cross) from 4–21 d of age. Daily clinical evaluations assessed health status. Calves with loose or watery feces were diagnosed with diarrhea and classified as bright-sick (BS) or depressed-sick (DS) according to behavior. Calves with normal or semiformed feces and no clinical illness were classified as healthy (H). One hundred and three fecal samples were obtained from consistently healthy calves and 64 samples were from calves with diarrhea (n = 39 BS; n = 25 DS). The V3-V4 region of 16S rRNA gene was sequenced and analyzed. Differences were identified by a linear-mixed effects model with a negative binomial error. DS and Jersey calves had a higher relative abundance of Streptococcus gallolyticus relative to H Holstein calves. In addition, DS calves had a lower relative abundance of Bifidobacterium longum and an enrichment of Escherichia coli. Species of the genus Lactobacillus, such as an unclassified Lactobacillus, Lactobacillus reuteri, and Lactobacillus salivarius were enriched in calves with GI disease. Moreover, we created a model to predict GI disease based on the fecal microbiome composition. The presence of Eggerthella lenta, Bifidobacterium longum, and Collinsella aerofaciens were associated with a healthy clinical outcome. Although lactobacilli are often associated with beneficial probiotic properties, the presence of E. coli and Lactobacillus species had the highest coefficients positively associated with GI disease prediction. Our results indicate that there are differences in the fecal microbiome of calves associated with GI disease severity and breed specificities.


2020 ◽  
Vol 8 (12) ◽  
pp. 1887
Author(s):  
Laurin Gierse ◽  
Alexander Meene ◽  
Daniel Schultz ◽  
Theresa Schwaiger ◽  
Claudia Karte ◽  
...  

Swine are regarded as promising biomedical models, but the dynamics of their gastrointestinal microbiome have been much less investigated than that of humans or mice. The aim of this study was to establish an integrated multi-omics protocol to investigate the fecal microbiome of healthy swine. To this end, a preparation and analysis protocol including integrated sample preparation for meta-omics analyses of deep-frozen feces was developed. Subsequent data integration linked microbiome composition with function, and metabolic activity with protein inventories, i.e., 16S rRNA data and expressed proteins, and identified proteins with corresponding metabolites. 16S rRNA gene amplicon and metaproteomics analyses revealed a fecal microbiome dominated by Prevotellaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae and Clostridiaceae. Similar microbiome compositions in feces and colon, but not ileum samples, were observed, showing that feces can serve as minimal-invasive proxy for porcine colon microbiomes. Longitudinal dynamics in composition, e.g., temporal decreased abundance of Lactobacillaceae and Streptococcaceae during the experiment, were not reflected in microbiome function. Instead, metaproteomics and metabolomics showed a rather stable functional state, as evident from short-chain fatty acids (SCFA) profiles and associated metaproteome functions, pointing towards functional redundancy among microbiome constituents. In conclusion, our pipeline generates congruent data from different omics approaches on the taxonomy and functionality of the intestinal microbiome of swine.


2019 ◽  
Vol 50 (1) ◽  
Author(s):  
Meera Surendran Nair ◽  
Tyson Eucker ◽  
Brian Martinson ◽  
Axel Neubauer ◽  
Joseph Victoria ◽  
...  

Abstract This study investigated the influence of gut microbiome composition in modulating susceptibility to Mycoplasma hyopneumoniae in pigs. Thirty-two conventional M. hyopneumoniae free piglets were randomly selected from six different litters at 3 weeks of age and were experimentally inoculated with M. hyopneumoniae at 8 weeks of age. Lung lesion scores (LS) were recorded 4 weeks post-inoculation (12 weeks of age) from piglet lungs at necropsy. Fecal bacterial community composition of piglets at 3, 8 and 12 weeks of age were targeted by amplifying the V3–V4 region of the 16S rRNA gene. The LS ranged from 0.3 to 43% with an evident clustering of the scores observed in piglets within litters. There were significant differences in species richness and alpha diversity in fecal microbiomes among piglets within litters at different time points (p < 0.05). The dissimilarity matrices indicated that at 3 weeks of age, the fecal microbiota of piglets was more dissimilar compared to those from 8 to 12 weeks of age. Specific groups of bacteria in the gut that might predict the decreased severity of M. hyopneumoniae associated lesions were identified. The microbial shift at 3 weeks of age was observed to be driven by the increase in abundance of the indicator family, Ruminococcaceae in piglets with low LS (p < 0.05). The taxa, Ruminococcus_2 having the highest richness scores, correlated significantly between litters showing stronger associations with the lowest LS (r = −0.49, p = 0.005). These findings suggest that early life gut microbiota can be a potential determinant for M. hyopneumoniae susceptibility in pigs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Scott Sugden ◽  
Dana Sanderson ◽  
Kyra Ford ◽  
Lisa Y. Stein ◽  
Colleen Cassady St. Clair

AbstractGeneralist species able to exploit anthropogenic food sources are becoming increasingly common in urban environments. Coyotes (Canis latrans) are one such urban generalist that now resides in cities across North America, where diseased or unhealthy coyotes are frequently reported in cases of human-wildlife conflict. Coyote health and fitness may be related to habitat use and diet via the gut microbiome, which has far-reaching effects on animal nutrition and physiology. In this study, we used stomach contents, stable isotope analysis, 16S rRNA gene amplicon sequencing, and measures of body condition to identify relationships among habitat use, diet, fecal microbiome composition, and health in urban and rural coyotes. Three distinct relationships emerged: (1) Urban coyotes consumed more anthropogenic food, which was associated with increased microbiome diversity, higher abundances of Streptococcus and Enterococcus, and poorer average body condition. (2) Conversely, rural coyotes harbored microbiomes rich in Fusobacteria, Sutterella, and Anaerobiospirillum, which were associated with protein-rich diets and improved body condition. (3) Diets rich in anthropogenic food were associated with increased abundances of Erysipelotrichiaceae, Lachnospiraceae, and Coriobacteriaceae, which correlated with larger spleens in urban coyotes. Urban coyotes also had an increased prevalence of the zoonotic parasite Echinococcus multilocularis, but there were no detectable connections between parasite infection and microbiome composition. Our results demonstrate how the consumption of carbohydrate-rich anthropogenic food by urban coyotes alters the microbiome to negatively affect body condition, with potential relationships to parasite susceptibility and conflict-prone behavior.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Elizabeth Half ◽  
Nirit Keren ◽  
Leah Reshef ◽  
Tatiana Dorfman ◽  
Ishai Lachter ◽  
...  

AbstractPancreatic cancer (PC) is a leading cause of cancer-related death in developed countries, and since most patients have incurable disease at the time of diagnosis, developing a screening method for early detection is of high priority. Due to its metabolic importance, alterations in pancreatic functions may affect the composition of the gut microbiota, potentially yielding biomarkers for PC. However, the usefulness of these biomarkers may be limited if they are specific for advanced stages of disease, which may involve comorbidities such as biliary obstruction or diabetes. In this study we analyzed the fecal microbiota of 30 patients with pancreatic adenocarcinoma, 6 patients with pre-cancerous lesions, 13 healthy subjects and 16 with non-alcoholic fatty liver disease, using amplicon sequencing of the bacterial 16S rRNA gene. Fourteen bacterial features discriminated between PC and controls, and several were shared with findings from a recent Chinese cohort. A Random Forest model based on the microbiota classified PC and control samples with an AUC of 82.5%. However, inter-subject variability was high, and only a small part of the PC-associated microbial signals were also observed in patients with pre-cancerous pancreatic lesions, implying that microbiome-based early detection of such lesions will be challenging.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Giulietta Minozzi ◽  
Filippo Biscarini ◽  
Emanuela Dalla Costa ◽  
Matteo Chincarini ◽  
Nicola Ferri ◽  
...  

The microbiome is now seen as an important resource to understand animal health and welfare in many species. However, there are few studies aiming at identifying the association between fecal microbiome composition and husbandry conditions in sheep. A wide range of stressors associated with management and housing of animals increases the hypothalamic–pituitary axis activity, with growing evidence that the microbiome composition can be modified. Therefore, the purpose of the present study was to describe the core microbiome in sheep, characterized using 16S rRNA gene sequencing, and to explore whether exposure to stressful husbandry conditions changed sheep hindgut microbiome composition. Sheep (n = 10) were divided in two groups: isolated group (individually separated for 3 h/day) and control group (housed in the home pen for the entire trial period). Sheep core microbiome was dominated by Firmicutes (43.6%), Bacteroidetes (30.38%), Proteobacteria (10.14%), and Verrucomicrobia (7.55%). Comparative results revealed few operational taxonomic units (OTUs) with significantly different relative abundance between groups. Chao1, abundance-based coverage estimator (ACE), and Fisher’s alpha indices did not show differences between groups. OTU-based Bray–Curtis distances between groups were not significant (p-value = 0.07). In conclusion, these results describing the core microbiome of sheep do not suggest a strong effect of stressful husbandry conditions on microbial composition.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1807
Author(s):  
Carolyn Arnold ◽  
Rachel Pilla ◽  
Keith Chaffin ◽  
Jonathan Lidbury ◽  
Joerg Steiner ◽  
...  

Diarrhea is an adverse effect of antimicrobial therapy in horses. This matched, case-controlled study compared the fecal microbiome and metabolome of horses on antibiotics that developed diarrhea (AAD, n = 17) to those that did not develop diarrhea (ABX, n = 15) and to a control population not exposed to antibiotics (CON, n = 31). Fecal samples were collected from horses that were matched for diet and antimicrobial agent (including dose, route, and duration of therapy). Illumina sequencing of 16S rRNA genes was performed, and QIIME 2.0 was used to generate alpha and beta diversity metrics. Untargeted metabolomics using GC-MS platforms was performed and analyzed using Metaboanalyst 5.0. Microbiome composition was significantly different in AAD compared to CON (ANOSIM, R = 0.568, p = 0.001) but not to ABX (ANOSIM, R = 0.121, p = 0.0012). AAD and ABX horses had significantly decreased richness and evenness compared to CON horses (p < 0.05). Horses on antimicrobials (AAD and ABX) had significant changes in 14 phyla compared to CON horses. Only Verrucomicrobia distinguished AAD from ABX and CON horses (q = 0.0005). Metabolite profiles of horses with AAD clustered separately from ABX and CON horses. Seven metabolites were found to be significantly different between groups (p < 0.05): L-tyrosine, kynurenic acid, xanthurenic acid, 5-hydroxyindole-3-acetic acid, docosahexaenoic acid ethyl ester, daidzein, and N-acetyltyramine. Metabolite profiles of horses on antimicrobials, especially those with AAD, are altered compared to CON horses.


Sign in / Sign up

Export Citation Format

Share Document