scholarly journals Antibacterial Properties of Canine Platelet-Rich Plasma and Other Non-Transfusional Hemo-Components: An in vitro Study

2021 ◽  
Vol 8 ◽  
Author(s):  
Anna-Rita Attili ◽  
Cristina Iacoucci ◽  
Evelina Serri ◽  
Vincenzo Cuteri ◽  
Andrea Cantalamessa ◽  
...  

This in vitro study was carried out to evaluate the potential antibacterial properties of canine non-transfusional hemo-components. Therapeutic formulations commonly used for regenerative medicine purposes (platelet-rich plasma, platelet gel, platelet lysate, fibrin glue), considering both leukocyte-rich and leukocyte-poor formulations, but also platelet-poor plasma and activating substances (thrombin, calcium gluconate), were tested to detect elements with potential antimicrobial properties. The antibacterial effect was tested on different bacterial strains (Staphylococcus aureus subspecies aureus, Staphylococcus cohnii subspecies cohnii, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae subspecies pneumoniae) isolated from canine wounds and classified as susceptible, multidrug-, extensively, and pandrug-resistant bacteria toward a known panel of human and veterinary antibiotics. The evaluation was carried out by agar gel diffusion method (Kirby–Bauer) and micro-inhibition in broth using microplates and spectrophotometer reading. The study findings confirmed the hypothesized antibacterial properties of canine non-transfusional hemo-components. A more effective bacteriostatic effect was found against Gram-negative bacteria, drug-resistant too. The presence of leukocytes or platelets does not appear to be essential for the antibacterial effect. Further studies should be conducted to evaluate the exact mechanism of action of the antimicrobial activity. However, non-transfusional hemo-components could be a useful natural aid in controlling bacterial infections in dogs.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Agata Cieślik-Bielecka ◽  
Tadeusz Bold ◽  
Grzegorz Ziółkowski ◽  
Marcin Pierchała ◽  
Aleksandra Królikowska ◽  
...  

The aim of the study was to investigate the leukocyte- and platelet-rich plasma (L-PRP) antimicrobial activity. The studied sample comprised 20 healthy males. The L-PRP gel, liquid L-PRP, and thrombin samples were testedin vitrofor their antibacterial properties against selected bacterial strains using the Kirby-Bauer disc diffusion method. Two types of thrombin were used (autologous and bovine). Zones of inhibition produced by L-PRP ranged between 6 and 18 mm in diameter. L-PRP inhibited the growth ofStaphylococcus aureus(MRSA and MSSA strains) and was also active againstEnterococcus faecalisandPseudomonas aeruginosa. There was no activity againstEscherichia coliandKlebsiella pneumoniae. The statistically significant increase of L-PRP antimicrobial effect was noted with the use of major volume of thrombin as an activator. Additionally, in groups where a bovine thrombin mixture was added to L-PRP the zones of inhibition concerning MRSA,Enterococcus faecalis, andPseudomonas aeruginosawere larger than in the groups with autologous thrombin. Based on the conducted studies, it can be determined that L-PRP can evokein vitroantimicrobial effects and might be used to treat selected infections in the clinical field. The major volume of thrombin as an activator increases the strength of the L-PRP antimicrobial effect.


Author(s):  
Bilgin Taşkın

Kefir; is a fermented milk product which is produced by granules containing a wide variety of microorganisms such as lactic acid bacteria, acetic acid bacteria and yeasts. It is traditionally consumed in many countries. It has been shown in many studies that the polysaccharide structure surrounding the granules which is composed mainly of kefiran molecule has antimicrobial effect against various pathogens as well as many health promoting effects. In this study, 24 h fermented kefir was used with two types of kefir granules for production of kefiran extract. One of them is being sold commercially and the other was collected from private households in a different region of Turkey. Kefiran extraction was carried out from matured kefir granules using three different temperatures, 80°C, 90°C and 100°C. Also, the protein contents of the extracted solutions were determined by Bradford method. Protein content of the extract solutions obtained were measured as 0.001 g/ml. The antibacterial effect of 0.05, 0.1, 1 and 2 mg of this extract against several plant pathogenic bacterial strains belonging to genus Pseudomonas, Xanthomonas, Erwinia ve Clavibacter was investigated in vitro for the first time. For this purpose, two methods, disc diffusion method and spreading method were used. The AN and SD kefir supernatants used as the positive controls in the experiments showed an average of 13-17 mm and 10-14 mm inhibition zones on the isolates, respectively, but the antibacterial effect of kefiran extracts was not observed.


2021 ◽  
Vol 46 (2) ◽  
Author(s):  
O. B Daramola ◽  
A. A Olajide ◽  
N Torimiro ◽  
R. C George

Wound infections have become life threatening as a result of treatment failures caused by multi-drug resistant pathogens. The search for newer compounds potent against antibiotic resistant bacteria associated with wounds is crucial. Hence this study investigated the application of antibacterial photodynamic therapy using meso tetra-(4-phenyl) porphyrin (TPP), metallated with zinc, tin and silver (ZnTPP, SnTPP and AgTPP), meso tetra-(4-sulphonatephenyl) porphyrin (TPPS) and the corresponding metallo meso tetra-(4-sulphonatephenyl) porphyrin (MTPPS) as photosensitizers. The in-vitro toxicity and photo-toxicity properties on four chronic wound colonizing multi-drug resistant bacterial strains: Staphylococcus aureus, Klebsiella sp., Proteus sp., and Escherichia coli were assessed using agar well diffusion method. Photo-toxicity of the compounds was investigated using 100 Watt tungsten lamp. Inhibitory activity of porphyrins tested against these bacterial strains showed Staphylococcus aureus to have both lowest (11±0.0 mm) and highest (33±1.1 mm) susceptibility to SnTPPS and ZnTPPS respectively. The sequence of data also showed appreciable improvement in the antimicrobial activities of five metalloporphyrins (SnTPP, AgTPP, ZnTPPS, SnTPPS and AgTPPS) exposed to light rays than when tested against bacterial strains in dark condition. ZnTPPS exhibited the best activity with improved photo-toxic activities against all bacterial strains (Staphylococcus aureus 33±1.1 mm, Klebsiella sp. 32±0.7 mm, Proteus sp. 28±0.7 mm and Escherichia coli 30±1.4 mm) examined in this study.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Eshetu Gadisa ◽  
Hydar Usman

Background. Emerging of multidrug-resistant bacteria can compromise the effectiveness of antibiotics used to treat skin infections. Those bacteria imposed public health problems and questioning medical care in the 21st century. In this circumstance, essential oils of medicinal plants origin are supreme sources of structural and functionally divergent compounds, which inhibited the growth of common wound colonizing MRSA and ESBL producing P. aeruginosa. The aim of this study was to evaluate the combined antibacterial activity of essential oils extracted from Rumex abyssinicus, Cucumis pustulatus, and Discopodium penninervium against multidrug-resistant (MDR) isolates of skin ulcers. Methods. Essential oils (EOs) were extracted from aerial parts of R. abyssinicus, C. pustulatus, and D. penninervium with steam distillation. A mixture of each oil (1 : 1) was adsorbed to a disc and placed on Mueller Hinton Agar. Then, minimum zone of inhibition and bactericidal concentration of EOs was measured after incubeted for 18–24 hours at 37 °C. Their combined antibacterial effect was determined by the fractional inhibitory concentration index. Results. The antibacterial activity of mixed oil varied in their doses and bacteria species, of which a mixture of essential oil of R. abyssinicus and D. penninervium had inhibition zone (32 mm); its MIC and MBC values range from 1-2 μl/ml against MRSA. It had an inhibition zone (36 mm), MIC value 4 μl/ml, and MBC (8 μl/ml) against ESBL producing P. aeruginosa, whereas combined effects of R. abyssinicus and C. pustulatus had MIC values ranging from 2–8 μl/ml for E. coli and K. pneumoniae and 2 μl/ml for MRSA. There was a strong synergistic effect between R. abyssinicus and D. penninervium and promising antibacterial effect more specifically on MRSA and P. aeruginosa. Conclusion. This in vitro study of the combined effect of EOs has significant antibacterial activity on wound colonizing bacteria and reduces delaying wound healing as that of modern drugs tested in parallel. Hence, further structural elucidation of active compounds helps us to properly design or synthesis of topical antibiotics for wound care.


Author(s):  
Samuel Füchtbauer ◽  
Soraya Mousavi ◽  
Stefan Bereswill ◽  
Markus M. Heimesaat

AbstractAntibiotic resistance is endangering public health globally and gives reason for constant fear of virtually intractable bacterial infections. Given a limitation of novel antibiotic classes brought to market in perspective, it is indispensable to explore novel, antibiotics-independent ways to fight bacterial infections. In consequence, the antibacterial properties of natural compounds have gained increasing attention in pharmacological sciences. We here performed a literature survey regarding the antibacterial effects of capsaicin and its derivatives constituting natural compounds of chili peppers. The studies included revealed that the compounds under investigation exerted i.) both direct and indirect antibacterial properties in vitro depending on the applied concentrations and the bacterial strains under investigation; ii.) synergistic antibacterial effects in combination with defined antibiotics; iii.) resistance-modification via inhibition of bacterial efflux pumps; iv.) attenuation of bacterial virulence factor expression; and v.) dampening of pathogen-induced immunopathological responses. In conclusion, capsaicin and its derivatives comprise promising antimicrobial molecules which could complement or replace antibiotic treatment strategies to fight bacterial infections. However, a solid basis for subsequent clinical trials requires future investigations to explore the underlying molecular mechanisms and in particular pharmaceutical evaluations in animal infection models.


2011 ◽  
Vol 1 (1) ◽  
pp. 17 ◽  
Author(s):  
Surekha Challa ◽  
Kiran K. Rajam ◽  
Vishnu V. V. Satyanarayana Kasapu ◽  
Suresh Kumar Tanneeru ◽  
Venkata Siva Satyanarayana Kantamreddi

<em>Rhynchosia scarabaeoides </em>(L.) DC plant parts are extensively used by traditional healers in India to treat a variety of bacterial diseases, such as dysentery, diarrohea and skin disorders. This article reports the antibacterial activities of n-hexane, ethyl acetate and ethanol extracts belonging to the leaf, stem and root parts of <em>R. scarabaeoides</em> against five bacterial strains, <em>Bacillus subtilis</em>, <em>Escherichia coli</em>, <em>Klebseilla pneumonia</em>, <em>Proteus vulgaris</em> and <em>Staphylococcus aureus</em>, using an agar gel diffusion method. The range of inhibition zone (IZ) was found to be 15-24 mm and the minimum inhibitory activity (MIC) was found to be 1 mL/well. The IZ was found to be higher in ethyl acetate extracts while this was moderate in ethanol extracts, and no activity was seen with n-hexane extracts or root extracts. The MIC value of leaf ethyl acetate extract was found to be 1 mg against bacterial strains <em>P. vulgaris</em> and <em>S. aureus</em>, whereas 2 mg was found against <em>B. subtilis</em>, <em>K. pneumoniae</em> and <em>E. coli</em>. These results support the traditional usage of R. scarabaeoides plant parts in the treatment of bacterial infections. Interestingly, this plant was screened for antibacterial activity for the first time and was found to be active. Detailed chemical investigations are, therefore, warranted.


2009 ◽  
Vol 4 (9) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Aysel Ugur ◽  
Nurdan Sarac ◽  
M. Emin Duru ◽  
Yavuz Beyatli

The antimicrobial activity of the n-hexane, chloroform, ethyl acetate and ethanol extracts of the aerial parts of C. drabifolia S.M. subsp. cappadocica (DC.) Wagenitz (Asteraceae) was evaluated against microorganisms including multi-antibiotic resistant bacteria using the paper disc diffusion method. The chemical composition of the chloroform extract of this plant was determined by gas chromatography and gas chromatography-mass spectrometry. The chloroform extract exhibited significant antibacterial activity against all the bacteria tested, except Stenotrophomonas maltophilia MU63. The major compounds of the chloroform extract were spathulenol (14.1%), caryophyllene oxide (12.5%), octadecanol (10.2%), ethyl palmitate (7.7%), [Z,Z]-10,12-hexadecadienal (6.0%), 3-hydroxy p-anisaldehyde (5.9%) and pentacosane (5.8%).


Author(s):  
Agnieszka Magryś ◽  
Alina Olender ◽  
Dorota Tchórzewska

AbstractGarlic has long been known as the most effective plant species in treatment of bacterial infections. Considering the vast potential of garlic as a source of antimicrobial drugs, this study is aimed to evaluate the antibacterial activity of Allium sativum extracts and their interactions with selected antibiotics against drug-sensitive and multidrug-resistant isolates of emerging bacterial pathogens that are frequently found in healthcare settings. As shown by the in vitro data obtained in this study, the whole Allium sativum extract inhibited the growth of a broad range of bacteria, including multidrug-resistant strains with bactericidal or bacteriostatic effects. Depending on the organism, the susceptibility to fresh garlic extract was comparable to the conventional antibiotic gentamycin. Since the combinations of fresh garlic extract with gentamycin and ciprofloxacin inhibited both the drug sensitive and MDR bacteria, in most cases showing a synergistic or insignificant relationship, the potential use of such combinations may be beneficial, especially in inhibiting drug-resistant pathogens. The study results indicate the possibility of using garlic as e.g. a supplement used during antibiotic therapy, which may increase the effectiveness of gentamicin and ciprofloxacin.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Maryam Hajiahmadi ◽  
Jamshid Faghri ◽  
Zohre Salehi ◽  
Fariba Heidari

Introduction. Early childhood caries is a kind of caries occurring in deciduous teeth. Bacteria are among the main factors. Antibacterial agents such as fluoride are used in both prevention and treatment, but their application in children faces limitations such as fluorosis. Therefore, novel methods of caries prevention among the children are mainly focused on the use of fluoride-free active ingredients. In this comparative study, antibacterial effects of gels containing propolis and aloe vera, fluoride, xylitol, and CPP-ACP were investigated. Methods. This is an in vitro study. By plate well technique, plates containing gels were created in the culture medium of Streptococcus mutans and Lactobacillus, and their antibacterial impacts were evaluated by measuring the inhibition zone after 24, 48, and 72 hours. Then, different concentrations of each gel were evaluated in the same way for the antibacterial properties. For each sample, this process was iterated 3 times, where the average was declared as the final number. The collected data were entered in SPSS 24. Results. In both bacteria, propolis gel and aloe vera had the highest zone of inhibition, followed by fluoride and xylitol in the second and third places, respectively. Different concentrations of gels are significantly different in terms of antimicrobial effect (P value ≤ 0/05). The antimicrobial effect of propolis and aloe vera gel was kept up to the concentration of 1 / 16 . As the bacterial and gel contact time is prolonged, the antibacterial effect of different gels increases, but the difference is not statistically significant (P value = 0.109). CPP-ACP gel had no antimicrobial effect at any concentration. Conclusion. Propolis and aloe vera gel had a greater antimicrobial effect than other gels, where such effect was observed in low concentrations. CPP-ACP gel had no antimicrobial properties.


2019 ◽  
Vol 4 (2) ◽  
pp. 69-74
Author(s):  
Ghazaleh Ilbeigi ◽  
Ashraf Kariminik ◽  
Mohammad Hasan Moshafi

Introduction: Given the increasing rate of antibiotic resistance among bacterial strains, many researchers have been working to produce new and efficient and inexpensive antibacterial agents. It has been reported that some nanoparticles may be used as novel antimicrobial agents.Here, we evaluated antibacterial properties of nickel oxide (NiO) nanoparticles. Methods: NiO nanoparticles were synthesized using microwave method. In order to control the quality and morphology of nanoparticles, XRD (X-ray diffraction) and SEM (scanning electronmicroscope) were utilized. The antibacterial properties of the nanoparticles were assessed against eight common bacterial strains using agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were measured. Antibiotic resistance pattern of the bacteria to nine antibiotics was obtained by Kirby-Bauer disk diffusion method. Results: The crystalline size and diameter (Dc) of NiO nanoparticles were obtained 40-60 nm. The nanoparticles were found to inhibit the growth of both gram-positive and gram-negative bacteria with higher activity against gram-positive organisms. Among bacterial strains, maximum sensitivity was observed in Staphylococcus epidermidis with MIC and MBC of 0.39 and 0.78 mg/mL, respectively. The bacteria had high resistance to cefazolin, erythromycin, rifampicin,ampicillin, penicillin and streptomycin.Conclusion: NiO nanoparticles exhibited remarkable antibacterial properties against gram positive and gram-negative bacteria and can be a new treatment for human pathogenic and antibiotic-resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document