scholarly journals Coordinating Postanthesis Carbon and Nitrogen Metabolism of Hybrid Rice through Different Irrigation and Nitrogen Regimes

Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1187
Author(s):  
Yongjian Sun ◽  
Yuanyuan Sun ◽  
Fengjun Yan ◽  
Yue Li ◽  
Yunxia Wu ◽  
...  

We sought to explore the role of postanthesis carbon and nitrogen (C-N) metabolism of hybrid rice in increasing yield and nitrogen utilization efficiency (NUE). We used the 13C and 15N dual-isotope tracer method and physiological/biochemical analysis and established different irrigation and nitrogen fertilization (W-N) regimes to investigate the relationship of C-N metabolism characteristics, yield, and NUE. The results showed that W-N regimes had significant effects on postanthesis absorption and translocation of N and photosynthate, yield and NUE. Aerobic irrigation combined with the N fertilization regime 30% base, 30% tillering, 40% booting was the best W-N coupling regime for rice yield and NUE increase. The regime enhanced flag leaf photosynthesis rate and the activities of ribulose 1,5-diphosphate carboxylase/oxygenase (RuBPCase), glutamine synthetase (GS), and other key enzymes of C-N metabolism, and improved the total accumulations of photoassimilates (0.97–21.57 mg 13C plant−1) and N (1.55–23.36 mg 15N plant−1), respectively. Correlation analysis showed that, under the W-N interaction, C-N metabolism enzymes promoted the positive synergistic effect between 13C and 15N accumulation in panicles (r = 0.825). In addition, the change in C/N ratio can be used as an indicator of the simultaneous improvement in yield and NUE in hybrid rice.

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 250 ◽  
Author(s):  
Asif Iqbal ◽  
Qiang Dong ◽  
Xiangru Wang ◽  
Huiping Gui ◽  
Hengheng Zhang ◽  
...  

Cotton production is highly sensitive to nitrogen (N) fertilization, whose excessive use is responsible for human and environmental problems. Lowering N supply together with the selection of N-efficient genotypes, more able to uptake, utilize, and remobilize the available N, could be a challenge to maintain high cotton production sustainably. The current study aimed to explore the intraspecific variation among four cotton genotypes in response to various N supplies, in order to identify the most distinct N-efficient genotypes and their nitrogen use efficiency (NUE)-related traits in hydroponic culture. On the basis of shoot dry matter, CCRI-69 and XLZ-30 were identified as N-efficient and N-inefficient genotypes, respectively, and these results were confirmed by their contrasting N metabolism, uptake (NUpE), and utilization efficiency (NUtE). Overall, our results indicated the key role of shoot glutamine synthetase (GS) and root total soluble protein in NUtE. Conversely, tissue N concentration and N-metabolizing enzymes were considered as the key traits in conferring high NUpE. The remobilization of N from the shoot to roots by high shoot GS activity may be a strategy to enhance root total soluble protein, which improves root growth for N uptake and NUE. In future, multi-omics studies will be employed to focus on the key genes and pathways involved in N metabolism and their role in improving NUE.


2021 ◽  
Vol 13 (4) ◽  
pp. 2018
Author(s):  
Tai McClellan Maaz ◽  
William C. Hockaday ◽  
Jonathan L. Deenik

Biochar has important biogeochemical functions in soil—first as a means to sequester carbon, and second as a soil conditioner to potentially enhance soil quality and fertility. Volatile matter (VM) content is a property of biochar that describes its degree of thermal alteration, which can have a direct influence on carbon and nitrogen dynamics in soil. In this study, we characterized the VM in biochars derived from two locally sourced feedstocks (corncob and kiawe wood) and evaluated the relationship of VM content to nitrogen transformations and culturable fungal biomass. Using 13C nuclear magnetic resonance (NMR) spectroscopy, we found that the VM content of biochar primarily consisted of alkyl (5.1–10.1%), oxygen-substituted alkyl (2.2–6.7%), and phenolic carbon (9.4–11.6%). In a series of laboratory incubations, we demonstrated that corncob biochars with high VM (23%) content provide a source of bioavailable carbon that appeared to support enhanced viable, culturable fungi (up to 8 fold increase) and cause nitrogen immobilization in the short-term. Corncob biochar with bioavailable VM was nitrogen-limited, and the addition of nitrogen fertilizer resulted in a four-fold increase in total hydrolytic enzyme activity and the abundance of culturable fungal colonies. In contrast, kiawe biochar with an equivalent VM content differed substantially in its composition and effect on these same biological parameters. Therefore, the rapid measurement of VM content is too coarse to differentiate chemical composition and to predict the behavior of biochars across feedstocks and production methods.


Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Lal Bux ◽  
Dalu Li ◽  
Muhammad Faheem ◽  
Nour Ali ◽  
Muzafar Hussain Sirohi ◽  
...  

The outcrossing traits in rice (Oryza sativa L.) affect the yield of hybrid seed production. Using a cytoplasmic male sterile (CMS) line with good outcrossing traits, such as short flag leaf length (FLL), narrow flag leaf width (FLW), wide flag leaf angle (FLA), and elongated panicle neck length (PNL), for hybrid rice seed production, it is possible to avoid the procedure of cutting flag leaves and make the supplementary pollination feasible by machine. In this study, a japonica restorer C-bao as the receptor parent and a primitive japonica accession Ludao as the donor parent were used to construct a chromosome segment substitution line (CSSL) population. The CSSL population was used to detect quantitative trait loci (QTLs) for the four outcrossing traits using a likelihood ratio test based on the stepwise regression (RSTEP-LRT) method. The CSSL population constructed consisted of 163 lines covering 90.7% of the donor genome. Among the seven QTLs detected in the CSSL population, four QTLs were detected in both years. qFLL-4 explained 6.70% of the two-year-averaged phenotypic variance, and the alleles from Ludao decreased FLL 5.1 cm. qFLA-1.1 and qFLA-1.2 explained 7.85% and 21.29% of the 2-year-averaged phenotypic variance respectively, and the alleles from Ludao increased FLA 17.38° and 31.50°. qPNL-8 explained 8.87% of the 2-year-averaged phenotypic variance, and the alleles from Ludao increased PNL 4.44 cm. These favorable alleles identified could be used to improve the outcrossing traits of parents for hybrid rice seed production in rice.


2020 ◽  
Vol 21 (6) ◽  
pp. 2098 ◽  
Author(s):  
Dong Zhu ◽  
Gengrui Zhu ◽  
Zhen Zhang ◽  
Zhimin Wang ◽  
Xing Yan ◽  
...  

We present the first comprehensive proteome analysis of wheat flag leaves under water-deficit, high-nitrogen (N) fertilization, and combined treatments during grain development in the field. Physiological and agronomic trait analyses showed that leaf relative water content, total chlorophyll content, photosynthetic efficiency, and grain weight and yield were significantly reduced under water-deficit conditions, but dramatically enhanced under high-N fertilization and moderately promoted under the combined treatment. Two-dimensional electrophoresis detected 72 differentially accumulated protein (DAP) spots representing 65 unique proteins, primarily involved in photosynthesis, signal transduction, carbohydrate metabolism, redox homeostasis, stress defense, and energy metabolism. DAPs associated with photosynthesis and protein folding showed significant downregulation and upregulation in response to water-deficit and high-N treatments, respectively. The combined treatment caused a moderate upregulation of DAPs related to photosynthesis and energy and carbohydrate metabolism, suggesting that high-N fertilization can alleviate losses in yield caused by water-deficit conditions by enhancing leaf photosynthesis and grain storage compound synthesis.


2017 ◽  
Vol 45 (4) ◽  
pp. 587-597
Author(s):  
R. Ben Mrid ◽  
R. El Omari ◽  
Y. Bouargalne ◽  
N. El Mourabit ◽  
M. Nhiri

2019 ◽  
Vol 110 (4) ◽  
pp. 873-882 ◽  
Author(s):  
Sindhu Kashyap ◽  
Aneesia Varkey ◽  
Nirupama Shivakumar ◽  
Sarita Devi ◽  
Rajashekar Reddy B H ◽  
...  

ABSTRACTBackgroundGood-quality plant protein sources are important for protein adequacy in a balanced diet. Legumes are known to be a source of good quality plant protein, but the true ileal digestibility of indispensable amino acids (IAAs) of commonly consumed legumes is not known in humans.ObjectivesIn this study we measured the true ileal IAA digestibility of 2H-intrinsically labeled chickpea, yellow pea, and mung bean (hulled and dehulled) protein, using the dual-isotope tracer technique referenced to a standard protein ([U-13C] spirulina). The study also aimed to validate the use of [U-13C] spirulina as a reference protein in this method.Methods2H-intrinsically labeled legumes, obtained by watering plants with deuterium oxide (2H2O), were administered in a plateau feeding method to healthy Indian adults to measure their true ileal IAA digestibility with the dual-isotope tracer technique, using [U-13C] spirulina protein or a 13C-algal IAA mixture as the standard.ResultThe true ileal IAA digestibilities (mean ± SD) of chickpea, yellow pea, and mung bean were 74.6 ± 0.8%, 71.6 ± 1.3%, and 63.2 ± 1.5%, respectively. The true mean ileal IAA digestibility of mung bean when referenced to [U-13C] spirulina protein or a 13C-algal IAA mixture did not differ significantly (63.2 ± 1.5% versus 64.0 ± 2.4%, P > 0.05). The true ileal IAA digestibility of mung bean improved to 70.9 ± 2.1% after dehulling.ConclusionsThe true mean ileal IAA digestibility of legumes in healthy Indian adults was lower than expected. Traditional processing techniques such as dehulling improve protein digestibility by about 8%. This study was registered in the Clinical Trials Registry of India (CTRI): CTRI/2017/11/010468 (http://ctri.nic.in, accessed on 28/03/2019).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Juansheng Ren ◽  
Fan Zhang ◽  
Fangyuan Gao ◽  
Lihua Zeng ◽  
Xianjun Lu ◽  
...  

AbstractThe yield heterosis of rice is sought by farmers and strong contributes to food safety, but the quality of hybrid rice may be reduced. Therefore, developing new varieties with both high yield and good quality is a heavily researched topic in hybrid rice breeding. However, the molecular mechanism governing yield heterosis and high rice quality has not been elucidated to date. In this study, a comparative transcriptomics and genomic analysis was performed on a hybrid rice variety, Chuanyou6203 (CY6203), and its parents to investigate the molecular mechanism and gene regulation network governing the formation of yield and quality stages. A total of 66,319 SNPs and InDels between CH3203 and C106B were detected in the 5′-UTR, exon, intronic, and 3′-UTR regions according to the reference genome annotation, which involved 7473 genes. A total of 436, 70, 551, 993, and 1216 common DEGs between CY6203 and both of its parents were identified at the same stage in panicles and flag leaves. Of the common DEGs, the numbers of upregulated DEGs between CY6203 and CH3203 were all greater than those of upregulated DEGs between CY6203 and C106B in panicles and flag leaves at the booting, flowering, and middle filling stages. Approximately 40.61% of mRNA editing ratios were between 0.4 and 0.6, and 1.68% of mRNA editing events (editing ratio ≥ 0.8) in CY6203 favored one of its parents at three stages or a particular stage, suggesting that the hypothetical heterosis mechanism of CY6203 might involve dominance or epistasis. Also 15,934 DEGs were classified into 19 distinct modules that were classified into three groups by the weighted gene coexpression network analysis. Through transcriptome analysis of panicles and flag leaves in the yield and quality stages, the DEGs in the green-yellow module primarily contributed to the increase in the source of CY6203 due to an in increase in photosynthetic efficiency and nitrogen utilization efficiency, and a small number of DEGs related to the grain number added spikelet number per panicle amplified its sink. The balanced expression of the major high-quality alleles of C106B and CH3203 in CY6203 contributed to the outstanding quality of CY6203. Our transcriptome and genome analyses offer a new data set that may help to elucidate the molecular mechanism governing the yield heterosis and high quality of a hybrid rice variety.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Zhi-Yan Du ◽  
Krzysztof Zienkiewicz ◽  
Natalie Vande Pol ◽  
Nathaniel E Ostrom ◽  
Christoph Benning ◽  
...  

Mutualistic interactions between free-living algae and fungi are widespread in nature and are hypothesized to have facilitated the evolution of land plants and lichens. In all known algal-fungal mutualisms, including lichens, algal cells remain external to fungal cells. Here, we report on an algal–fungal interaction in which Nannochloropsis oceanica algal cells become internalized within the hyphae of the fungus Mortierella elongata. This apparent symbiosis begins with close physical contact and nutrient exchange, including carbon and nitrogen transfer between fungal and algal cells as demonstrated by isotope tracer experiments. This mutualism appears to be stable, as both partners remain physiologically active over months of co-cultivation, leading to the eventual internalization of photosynthetic algal cells, which persist to function, grow and divide within fungal hyphae. Nannochloropsis and Mortierella are biotechnologically important species for lipids and biofuel production, with available genomes and molecular tool kits. Based on the current observations, they provide unique opportunities for studying fungal-algal mutualisms including mechanisms leading to endosymbiosis.


2008 ◽  
Vol 21 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Lieceng Zhu ◽  
Xuming Liu ◽  
Xiang Liu ◽  
Richard Jeannotte ◽  
John C. Reese ◽  
...  

Carbon and nitrogen (C/N) metabolism and allocation within the plant have important implications for plant-parasite interactions. Many plant parasites manipulate the host by inducing C/N changes that benefit their own survival and growth. Plant resistance can prevent this parasite manipulation. We used the wheat–Hessian fly (Mayetiola destructor) system to analyze C/N changes in plants during compatible and incompatible interactions. The Hessian fly is an insect but shares many features with plant pathogens, being sessile during feeding stages and having avirulence (Avr) genes that match plant resistance genes in gene-for-gene relationships. Many wheat genes involved in C/N metabolism were differentially regulated in plants during compatible and incompatible interactions. In plants during compatible interactions, the content of free carbon-containing compounds decreased 36%, whereas the content of free nitrogen-containing compounds increased 46%. This C/N shift was likely achieved through a coordinated regulation of genes in a number of central metabolic pathways, including glycolysis, the tricarboxylic acid cycle, and amino-acid synthesis. Our data on plants during compatible interactions support recent findings that Hessian fly larvae create nutritive cells at feeding (attack) sites and manipulate host plants to enhance their own survival and growth. In plants during incompatible interactions, most of the metabolic genes examined were not affected or down-regulated.


1999 ◽  
Vol 56 (S1) ◽  
pp. 94-117 ◽  
Author(s):  
Thomas C Kline, Jr.

Stable isotope ratios of carbon and nitrogen were used to identify seasonal and spatial patterns in carbon and nitrogen and to determine source of energy (Prince William Sound (PWS) versus the Gulf of Alaska (GOA)) for juvenile fishes in PWS. PWS-wide samples of bulk net zooplankton (all noncalcareous zooplankton collected in 335-µm-mesh nets), individual late copepodid stage of the large herbivore Neocalanus cristatus, juvenile Pacific herring (Clupea pallasi), and juvenile walleye pollock (Theragra chalcogramma) were collected in spring, summer, and fall in 1994 and 1995. For bulk zooplankton and N. cristatus, there was a strong 13C/12C gradient but weak 15N/14N gradient within PWS and GOA. Zooplankton 15N/14N was positively correlated with 13C/12C during the phytoplankton bloom but was not correlated during the zooplankton bloom, suggesting a decoupling of nitrogen and carbon cycles. Plankton isotopic signatures suggested a diagnostic 13C/12C for GOA carbon. For juvenile fishes and diapausing copepods in PWS, 13C/12C varied between years, suggesting that the origin of carbon differed between years (GOA more so in 1995 than in 1994). Use of a natural stable isotope tracer provided evidence for biophysical coupling via inferred fluctuations in oceanographic processes.


Sign in / Sign up

Export Citation Format

Share Document