scholarly journals Valorization of Cereal By-Products from the Milling Industry as a Source of Nutrients and Bioactive Compounds to Boost Resource-Use Efficiency

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 972
Author(s):  
Rossana V. C. Cardoso ◽  
Ângela Fernandes ◽  
José Pinela ◽  
Maria Inês Dias ◽  
Carla Pereira ◽  
...  

Cereal by-products (wheat germ, maize bran–germ mixture, rye bran, and wheat bran) from the flour milling industry were characterized for their nutritional value and chemical composition, as well as for antioxidant and antibacterial activities. Carbohydrates (including sucrose) were the major nutritional constituents (56.35–78.12 g/100 g dw), followed by proteins (11.2–30.0 g/100 g dw). The higher energy value (432.3 kcal/100 g dw) was presented by the wheat germ. This by-product also presented the highest citric acid content (0.857 g/100 g dw), the most abundant organic acid detected. Unsaturated fatty acids predominated in all samples given the high content of linoleic (53.9–57.1%) and oleic (13.4–29.0%) acids. Wheat germ had the highest levels of tocopherols (22.8 mg/100 g dw) and phenolic compounds (5.7 mg/g extract, with a high apigenin-C-pentoside-C-hexoside content). In turn, while the wheat bran extract was particularly effective in inhibiting the formation of thiobarbituric acid reactive substances (TBARS), the rye bran extract was the only sample capable of protecting erythrocytes from oxidative hemolysis. Regarding antibacterial properties, in general, the lowest minimum inhibitory concentrations were observed against methicillin-resistant Staphylococcus aureus. These results highlight the characterized by-products as sustainable ingredients for the development of novel bakery and functional food products and contribute to a better bioresource-use efficiency and circularity.

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1241
Author(s):  
Yuthana Phimolsiripol ◽  
Srirana Buadoktoom ◽  
Pimporn Leelapornpisid ◽  
Kittisak Jantanasakulwong ◽  
Phisit Seesuriyachan ◽  
...  

The effect of ultrasonication on the antioxidant and antibacterial properties of Ceylon spinach (Basella alba) extracts (CE) and the shelf life of chilled pork with CE were studied. The CE were ultrasonicated at different power levels (60–100%) for 10–40 min in an ultrasonic bath with the rise of antioxidant activities (p ≤ 0.05) proportional to the ultrasonication time. The additional investigation of antibacterial activities showed that the ultrasonicated extracts (100 mg/mL) could inhibit and inactivate Staphylococcus aureus and Escherichia coli with the optimal condition of 80% power for 40 min. For shelf-life testing, fresh pork treated with the ultrasonicated extracts at 100 and 120 mg/mL had lower values of thiobarbituric acid reactive substances (TBARS) than the control (without dipping). For food safety as measured by the total microbial count, the fresh pork dipped with 100–120 mg/mL CE extract could be kept at 0 °C for 7 days, 2 to 3 days longer than control meat at 0 and 4 °C, respectively. A sensory evaluation using a nine-point hedonic scale showed that fresh pork dipped with 100-mg/mL CE extracts was accepted by consumers. It is suggested that CE extracts can be applied in the food industry to enhance the quality and extend the shelf life of meat products.


1999 ◽  
Vol 18 (11) ◽  
pp. 677-682 ◽  
Author(s):  
R Medina-Navarro ◽  
E Mercado-Pichardo ◽  
O Herńndez-Pérez ◽  
J J Hicks

By-products of lipoperoxidation reactions may be associated with the genesis or the progression of several diseases as arteriosclerosis, diabetes and cancer, among many others. Acrolein, at first a widely distributed environmental pollutant, is currently known as a compound capable of being generated as a result of metabolic reactions within biological systems, highly toxic and the most electrophilic of the a, b-unsaturated aldehydes formed during lipoperoxidation. In the present study: 1 The separation of acrolein and malondialdehyde was achieved at alkaline pH with the use of high voltage capillary electrophoresis in uncoated fused-silica capillaries. 2 It was demonstrated how the oxidation of fatty acids (arachidonic/linoleic) with ozone generates, in dose-dependent form, acrolein as one of the by-products of the lipoperoxidation process. The oxidation of open human erythrocyte membranes with ozone also generated acrolein. 3 After aldolic condensation, aldol-acrolein derivative has a positive reaction with 2-thiobarbituric acid (TBA) and shows a maximum absorption at 498 nm. This novel characteristic is used in its identification after the separation of the by-products. 4 It is possible to suggest that in the classic reaction of the denominated thiobarbituric acid reactive substances (TBARS), when used as an indicator of the degree of peroxidation in biological systems, a portion of acrolein could be present but dwarfed by the TBAMDA adduct.


Author(s):  
Azadeh Foroughi ◽  
Pouya Pournaghi ◽  
Fariba Najafi ◽  
Akram Zangeneh ◽  
Mohammad Mahdi Zangeneh ◽  
...  

Medicinal plants are considered modern resources for producing agents that could act as alternatives to antibiotics in demeanor of antibiotic-resistant bacteria. The aim of the study was to evaluate the chemical composition and antibacterial activities of essential oil of Foeniculum vulgare (FV) against Pseudomonas aeruginosa and Bacillus subtilis. Gas chromatography mass spectrometry was done to specify chemical composion. As a screen test to detect antibacterial properties of the essential oil, agar disk and agar well diffusion methods were employed. Macrobroth tube test was performed to determinate MIC. The results indicated that the most substance found in FV essential oil was Trans-anethole (47.41 %), also the essential oil of FV with 0.007 g/ml concentration has prevented P. aeruginosa and with 0.002 g/ml concentration has prevented B. subtilis from the growth. Thus, the research represents the antibacterial effects of the medical herb on test P. aeruginosa and B. subtilis. We believe that the article provide support to the antibacterial properties of the essential oil. The results indicate the fact that the essential oil from the plant can be useful as medicinal or preservatives composition.


2021 ◽  
Author(s):  
Anam Khalid ◽  
Muhammad Sohaib ◽  
Muhammad Tahir Nadeem ◽  
Farhan Saeed ◽  
Ali Imran ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 450
Author(s):  
Maigualida Cuenca ◽  
María Carmen Sánchez ◽  
Pedro Diz ◽  
Lucía Martínez-Lamas ◽  
Maximiliano Álvarez ◽  
...  

The aim of this study was to evaluate the potential anti-biofilm and antibacterial activities of Streptococcus downii sp. nov. To test anti-biofilm properties, Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans were grown in a biofilm model in the presence or not of S. downii sp. nov. for up to 120 h. For the potential antibacterial activity, 24 h-biofilms were exposed to S. downii sp. nov for 24 and 48 h. Biofilms structures and bacterial viability were studied by microscopy, and the effect in bacterial load by quantitative polymerase chain reaction. A generalized linear model was constructed, and results were considered as statistically significant at p < 0.05. The presence of S. downii sp. nov. during biofilm development did not affect the structure of the community, but an anti-biofilm effect against S. mutans was observed (p < 0.001, after 96 and 120 h). For antibacterial activity, after 24 h of exposure to S. downii sp. nov., counts of S. mutans (p = 0.019) and A. actinomycetemcomitans (p = 0.020) were significantly reduced in well-structured biofilms. Although moderate, anti-biofilm and antibacterial activities of S. downii sp. nov. against oral bacteria, including some periodontal pathogens, were demonstrated in an in vitro biofilm model.


2013 ◽  
Vol 795 ◽  
pp. 692-696 ◽  
Author(s):  
Nida Iqbal ◽  
Mohammed Rafiq Abdul Kadir ◽  
Nasrul Humaimi Bin Mahmood ◽  
Micheal Moses ◽  
Mashitah Binti Mad Salim ◽  
...  

Antibacterial materials based on calcium phosphates have wide range of biomedical applications in the prevention of microbial infections. The synthesis of inorganic mineral component of bone i.e. hydroxyapatite was done with the addition of silver (Ag) (5-15 wt %) as antibacterial agent. The wet precipitation synthesis was carried out using diammonium hydrogen phosphate and calcium nitrate as P and Ca precursors. The presence and effect of silver addition on the structure was studied using Fourier Transform-Infrared (FTIR) spectroscopy and Energy Dispersive X-ray (EDX) techniques. The antibacterial properties of all samples were evaluated using Disc Diffusion Technique (DDT) againstS. aureus,B. subtilis, P. aeruginosaandE. coli. Antibacterial activities of samples were found to vary depending on the bacterial species and Ag loading percentage. The antibacterial assay suggested that the addition of Ag ions within hydroxyapatite can be effectively provided the required level of antibacterial activity against bacteria.


2013 ◽  
Vol 829 ◽  
pp. 294-298 ◽  
Author(s):  
Mehrdad Rashidzadeh

High purity Cadmium (Cd) metal was used as raw material and placed in a microwave susceptor. an evaporation/oxidation process occurs under exposure to microwave in less than 2 minutes. Then, Evaporated cadmium reacted with oxygen and cadmium oxide was collected on the inner surface of a glassy container that was placed a few centimeters above the susceptor. Morphological and structural information of As-synthesized CdO nanopowder, were investigated via SEM and X-ray diffraction (XRD) spectroscopy. The antibacterial activities of different concentration of the CdO nanoparticles were tested by treating Escherichia coli (Gram negative) cultures with CdO nanoparticles. The Study indicates that cadmium oxide nanoparticles show effective antibacterial activity toward the gram-negative bacterium E. coli. Electrochemical properties of as-synthesized powder were investigated via linear and two vertex cyclic voltammetery in the presence of ethanol, a pair of Oxidation/reduction peaks were achieved.


2021 ◽  
Author(s):  
E.K. Soltani ◽  
K. Zaim ◽  
K. Mokhnache ◽  
N. Haichour ◽  
S. Mezaache-Aichour ◽  
...  

The propolis, an extremely complex resinous material, exhibits valuable pharmacological and biological properties, mainly attributed to the presence of polyphenols. The composition of propolis depends on time, vegetation, and the area of collection. Total flavonoid and polyphenol contents of aqueous extracts of propolis samples from different areas of Algeria, determined by using aluminum chloride and Folin–Ciocalteu colorimetric methods, were in the range of 3.047 ± 0.004–5.273 ± 0.013 mg/g and 96.833 ± 0.027–458.833 ± 0.0005 mg/g crude extract of propolis, respectively. This study examined the antioxidant and antimicrobial activities of propolis. Aqueous extracts of propolis were obtained in order to evaluate their antioxidant activities by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, β-carotene and electrochemical assays. All tested propolis samples had relatively strong antioxidant activities, which were also correlated with the total polyphenol and flavonoid content present. The percentage of inhibition of lipid peroxidation of linoleic acid emulsion during 24 h varied between 86.04 ± 0.42 and 90.60 ± 3.77% among the tested samples. The highest DPPH radical scavenging activity was observed by ABAL (Ain Abassa Aqueous Extract) with IC50 = 8.49 ± 5.07 10−5 μg/ml, and the lowest was observed by SAL (Setif Aqueous Extract) with IC50 of 21.16 ± 0.0001 μg/ml. The most important antibacterial activity was obtained with Ain Abassa extract; the zones of inhibition obtained for this excerpt vary from 15.22 to 15.5 mm. Followed by the Setif extract with areas of 12.33 to 12.75 mm, the Tizi-Ouzou extract with areas of 10.11 to 11.11 mm. This study will bring an innovation for further studies with regard to the antioxidant and antibacterial properties of the aqueous extracts of propolis. This study corroborates that Algerian propolis is a rich source of natural antioxidants, properties which could be used in the prevention of different diseases, both in humans and in animals.


2021 ◽  
Vol 17 ◽  
Author(s):  
Hummera Rafique ◽  
Aamer Saeed ◽  
Muhammad Naseem ◽  
Tauqeer Riaz ◽  
Fouzia Perveen ◽  
...  

Background: Heterocyclic compounds display versatile biological applications, so the aim of this paper was to prepare biologically important heterocycles with enhanced bacterial resistance and to evaluate for their various structural features that are responsible for their biological properties. Objective: The objective was to synthesize bacterial resistance compounds with enhanced antibacterial properties. Method: Ester moiety containing thiazole ring was converted into its hydrazide derivatives. These heterocyclic derivatives were cyclized into another ring oxadiazole; hence a hybrid ring system of two biologically active rings was prepared. Result: All the synthesized compounds were characterized by spectroscopic techniques and were screened for their antibacterial potential; they possess significant antibacterial activities. Conclusion: New hybrid heterocyclic ring systems were synthesized by cyclization of hydrazide derivatives by adopting two step strategy in good yields. All the synthesized compounds were evaluated for their antioxidant activities; they showed moderate to significant activities. QSAR and Molecular docking studies were performed to determine the mode of interaction. Experimental and computational data is in accordance with the determined antibacterial activities.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1365
Author(s):  
Nurul Ainaa Farhanah Mat Ramlan ◽  
Aina Syahirah Md Zin ◽  
Nur Fatihah Safari ◽  
Kim Wei Chan ◽  
Norhasnida Zawawi

In the honey industry, heat treatments are usually applied to maintain honey’s quality and shelf life. Heat treatment is used to avoid crystallisation and allow the easy use of honey, but treatment with heat might affect the antioxidant and antibacterial activities, which are the immediate health effects of honey. This study will determine the effect of heat treatment on Malaysian and Australian stingless bee honey (SBH) produced by the common bee species in both countries. Eighteen honey samples were subjected to heat at 45 °C, 55 °C and 65 °C for one hour and subsequently analysed for their total phenolic content (TPC), total flavonoid content (TFC), DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP) and minimum inhibitory concentration (MIC). The results show that all samples had high TPC, TFC and antioxidant activities before the treatment. The heat treatments did not affect (p < 0.05) the TPC, TFC and antioxidant activities in most samples, but did inhibit the antibacterial activities consistently in most of the samples, regardless of the bee species and country of origin. This study also confirms a strong correlation between TPC and TFC with FRAP activities for the non-heated and heated honey samples (p < 0.05). Other heat-sensitive bioactive compounds in SBH should be measured to control the antibacterial properties present.


Sign in / Sign up

Export Citation Format

Share Document