scholarly journals Carbon Dioxide Enrichment Combined with Supplemental Light Improve Growth and Quality of Plug Seedlings of Astragalus membranaceus Bunge and Codonopsis lanceolata Benth. et Hook. f.

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 715
Author(s):  
Ya Liu ◽  
Xiuxia Ren ◽  
Byoung Ryong Jeong

Astragalus membranaceus Bunge and Codonopsis lanceolata Benth. et Hook. f. are two medicinal species used to remedy inflammation, tumor, and obesity in Eastern medicine. Carbon dioxide (CO2) and supplemental lighting are two methods to enhance the growth, yield, and quality of crops. However, few studies have focused on the synergistic effects of CO2 and the supplemental light source on plug seedlings of medicinal species. In this study, uniform seedlings were grown with no supplemental light (the control) or under one of three supplemental light sources [high pressure sodium (HPS), metal halide (MH), or mixed light-emitting diodes (LEDs)] combined with one of three levels of CO2 (350, 700, or 1050 μmol·mol−1). The supplemental light (100 μmol·m−2·s−1 photosynthetic photon flux density) and CO2 were provided simultaneously from 10:00 pm to 2:00 am every day. The results showed that the supplemental lighting (LEDs, MH, and HPS) greatly improved the seedling quality with greater dry weights (of the shoot, root, and leaf), stem diameter, leaf area, and Dickson’s quality index (DQI) than those of the control in both species. An enriched CO2 at 1050 μmol·mol−1 accelerated the growth and development of plug seedlings, evidenced by the increased root and leaf dry weights, stem diameter, and DQI compared to the those from the other two CO2 enrichment levels. Moreover, LEDs combined with 1050 μmol·mol−1 CO2 not only increased the contents of soluble sugars but also the starch content. However, an enriched CO2 at 700 μmol·mol−1 was more suitable for the accumulation of total phenols and flavonoids. Furthermore, LEDs combined with 700 or 1050 μmol·mol−1 CO2 increased the chlorophyll, quantum yield, and stomatal conductance at daytime and nighttime for A. membranaceus and C. lanceolata, respectively. In conclusion, the data suggest that LEDs combined with CO2 at 1050 μmol·mol−1 is recommended for enhancing the growth and development of plug seedlings of A. membranaceus and C. lanceolata.

Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 654
Author(s):  
Liu ◽  
Ren ◽  
Jeong

Astragalus membranaceus Bunge and Codonopsis lanceolata Benth. et Hook. f. are two famous medical species in Korea, China, and Japan, mainly used for treating diseases including cancer, obesity, and inflammation. Manipulation of the difference between the day and night temperatures (DIF) is an efficient horticultural practice to regulate the growth and development of vegetables in a glasshouse. However, little research has focused on how the DIF influences the plug seedling quality of medicinal plants. In this study, uniform plug seedlings were cultivated in three environmentally controlled chambers under an average daily temperature of 20 °C with negative (−10 °C), zero, or positive (+10 °C) DIFs, and the same relative humidity (75%), photoperiod (12 h), and light intensity (150 μmol·m−2·s−1 photosynthetic photon flux density with white LEDs). The results showed that the DIF had a noticeable effect on the growth, development, and morphology of A. membranaceus and C. lanceolata plug seedlings. The positive DIF (+10 °C) significantly increased the biomass (shoot, root, and leaf), stem diameter, and Dickson’s quality index, indicating an enhanced plug seedling quality. Moreover, the contents of primary and secondary metabolites, including soluble sugar, starch, total phenols and flavonoids, were higher with higher DIFs, where the maximum values were found at 0 °C or +10 °C DIF. Furthermore, the increases in the chlorophyll content and stomatal conductance were obtained in a positive DIF, indicating that a positive DIF was favorable to photosynthesis. An analysis of the gene expression showed that a positive DIF (+10 °C) up-regulated the expression of photosynthetic genes, including GBSS, RBCL, and FDX. In conclusion, the results of this study recommend a positive DIF (+10 °C) for enhancing the quality of A. membranaceus and C. lanceolata plug seedlings.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 407 ◽  
Author(s):  
Ya Liu ◽  
Xiuxia Ren ◽  
Byoung Ryong Jeong

Astragalus membranaceus and Codonopsis lanceolata are two important medical herbs used in traditional Oriental medicine for preventing cancer, obesity, and inflammation. Night temperature is an important factor that influences the plug seedling quality. However, little research has focused on how the night temperature affects the growth and development of plug seedlings of these two medicinal species. In this study, uniform plug seedlings were cultivated in three environmentally controlled chambers for four weeks under three sets of day/night temperatures (25/10 °C, 25/15 °C, or 25/20 °C), the same relative humidity (75%), photoperiod (12 h), and light intensity (150 μmol·m−2·s−1 PPFD) provided by white LEDs. The results showed that night temperature had a marked influence on the growth and development of both species. The night temperature of 15 °C notably enhanced the quality of plug seedlings evidenced by the increased shoot, root, and leaf dry weights, stem diameter, and Dickson’s quality index. Moreover, a night temperature of 15 °C also stimulated and increased contents of primary and secondary metabolites, including soluble sugar, starch, total phenols and flavonoids. Furthermore, the 15 °C night temperature increased the chlorophyll content and stomatal conductance and decreased the hydrogen peroxide content. Analysis of the gene expression showed that granule-bound starch synthase (GBSS), ribulose bisphosphate carboxylase large chain (RBCL), and ferredoxin (FDX) were up-regulated when the night temperature was 15 °C. Taken together, the results suggested that 15 °C is the optimal night temperature for the growth and development of plug seedlings of A. membranaceus and C. lanceolata.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 80
Author(s):  
Triston Hooks ◽  
Joseph Masabni ◽  
Ling Sun ◽  
Genhua Niu

Blue light and ultra-violet (UV) light have been shown to influence plant growth, morphology, and quality. In this study, we investigated the effects of pre-harvest supplemental lighting using UV-A and blue (UV-A/Blue) light and red and blue (RB) light on growth and nutritional quality of lettuce grown hydroponically in two greenhouse experiments. The RB spectrum was applied pre-harvest for two days or nights, while the UV-A/Blue spectrum was applied pre-harvest for two or four days or nights. All pre-harvest supplemental lighting treatments had a same duration of 12 h with a photon flux density (PFD) of 171 μmol m−2 s−1. Results of both experiments showed that pre-harvest supplemental lighting using UV A/Blue or RB light can increase the growth and nutritional quality of lettuce grown hydroponically. The enhancement of lettuce growth and nutritional quality by the pre-harvest supplemental lighting was more effective under low daily light integral (DLI) compared to a high DLI and tended to be more effective when applied during the night, regardless of spectrum.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 339 ◽  
Author(s):  
Hao Wei ◽  
Jin Zhao ◽  
Jiangtao Hu ◽  
Byoung Ryong Jeong

Lower quality and longer production periods of grafted seedlings, especially grafted plug seedlings of fruit vegetables, may result from insufficient amounts of light, particularly in rainy seasons and winter. Supplemental artificial lighting may be a feasible solution to such problems. This study was conducted to evaluate light intensity’s influence on the quality of grafted tomato seedlings, ‘Super Sunload’ and ‘Super Dotaerang’ were grafted onto the ‘B-Blocking’ rootstock. To improve their quality, grafted seedlings were moved to a glasshouse and grown for 10 days. The glasshouse had a combination of natural lighting from the sun and supplemental lighting from LEDs (W1R2B2) for 16 h/day. Light intensity of natural lighting was 490 μmol·m−2·s−1 photosynthetic photon flux density (PPFD) and that of supplemental lighting was 50, 100, or 150 μmol·m−2·s−1 PPFD. The culture environment had 30/25 °C day/night temperatures, 70% ± 5% relative humidity (RH), and a natural photoperiod of 14 h as well. Compared with quality of seedlings in supplemental lighting of 50 μmol·m−2·s−1 PPFD, that of seedlings in supplement lighting of 100 or 150 μmol·m−2·s−1 PPFD improved significantly. With increasing light intensity, diameter, fresh weight, and dry weight, which were used to measure shoot growth, greatly improved. Leaf area, leaf thickness, and root biomass were also greater. However, for quality of seedlings, no significant differences were discovered between supplement lighting of 100 μmol·m−2·s−1 PPFD and supplement lighting of 150 μmol·m−2·s−1 PPFD. Expressions of PsaA and PsbA (two photosynthetic genes) as well as the corresponding proteins increased significantly in supplement lightning of 100 and 150 μmol·m−2·s−1 PPFD, especially in 100 μmol·m−2·s−1 PPFD. Overall, considering quality and expressions of two photosynthetic genes and proteins, supplemental light of 100 μmol·m−2·s−1 PPFD (W1R2B1) would be the best choice to cultivate grafted tomato seedlings.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 337 ◽  
Author(s):  
Hao Wei ◽  
Mengzhao Wang ◽  
Byoung Ryong Jeong

Insufficient exposure to light in the winter may result in a longer production periods and lower quality of seedlings in greenhouses for plug growers. Supplementary artificial lighting to plug seedlings may be one solution to this problem. The objective of this study was to assess the effects of the duration of the supplementary light on the growth and development of two watermelon cultivars, ‘Speed’ and ‘Sambok Honey’ grafted onto ‘RS-Dongjanggun’ bottle gourd rootstocks (Lagenaria siceraria Stanld). Seedlings were grown for 10 days in a glasshouse with an average daily natural light intensity of 340 μmol·m−2·s−1 photosynthetic photon flux density (PPFD) and daily supplementary lighting of 8, 12 or 16 h from mixed LEDs (W1R2B1, chip ratio of white:red:blue = 1:2:1) at a light intensity of 100 μmol·m−2·s−1 PPFD, a group without supplementary light was set as the control (CK). The culture environment in a glasshouse had 25/15 °C day/night temperatures, an 85 ± 5% relative humidity, and a natural photoperiod of 8 h. The results showed that all the growth and development parameters of seedlings grown with supplementary light were significantly greater than those without supplementary light (CK). The 12 and 16 h supplementary light resulted in greater growth and development parameters than the 8 h supplementary light did. The same trend was also found with the indexes that reflect the quality of the seedlings, such as the dry weight ratio of the shoot and root, total biomass, dry weight to height ratio of scions, and specific leaf weight. The 12 h and 16 h light supplements resulted in greater Dickson’s quality indexes compared to the 8 h supplementary light, and the 12 h supplementary light showed the greatest use efficiency of the supplementary light. 16 h of daily supplementary light significantly increased the H2O2 content and the antioxidant enzyme activities in seedlings compared to the other treatments. This indicated that 16 h of supplementary light led to certain stresses in watermelon seedlings. In conclusion, considering the energy consumption, 12 h of supplementary light was the most efficient in improving the quality of the two cultivars of grafted watermelon plug seedlings.


HortScience ◽  
2020 ◽  
Vol 55 (6) ◽  
pp. 804-811 ◽  
Author(s):  
Charlie Garcia ◽  
Roberto G. Lopez

Supplemental lighting is required for the production of high-quality vegetable transplants in greenhouses when the photosynthetic daily light integral (DLI) is low. Light-emitting diodes (LEDs) are a promising alternative to high-pressure sodium (HPS) lamps. However, there are a limited number of studies that have evaluated how LED supplemental lighting spectral quality beyond blue (B) and red (R) radiation influences plant growth and development. Seeds of hybrid greenhouse seedless cucumber ‘Elsie’ (Cucumis sativus), tomato ‘Climstar’ (Solanum lycopersicum), and pepper ‘Kathia’ (Capsicum annuum) were sown and placed into a dark growth chamber until radicle emergence. Seedlings were grown in a greenhouse at a 25 °C constant temperature set point and under five lighting treatments. The supplemental lighting treatments delivered a total photon flux density (TPFD) of 120 μmol·m−2·s−1 for 16 h·d−1 based on an instantaneous threshold from HPS lamps or LEDs [three treatments composed of B (400–500 nm), R (600–700 nm), white, and/or far-red (FR; 700–800 nm) LEDs], and a control that delivered 25 μmol·m−2·s−1 from HPS lamps (HPS25). The LED treatments defined by their wavebands (TPFD in μmol·m−2·s–1) of B, green (G, 500–600 nm), R, and FR radiation were B20G10R75FR15, B25R95, and B30G30R60; whereas the HPS treatments emitted B7G57R47FR9 (HPS120) and B1G13R9FR2 (HPS25). Generally, cucumber, pepper, and tomato transplants under B30G30R60 and HPS120 supplemental lighting had the greatest stem diameter. Fresh weight and leaf area of all three species was greater when G radiation replaced R or B radiation. For example, leaf area and fresh weight of cucumber, tomato, and pepper increased (by 33%, 22%, and 49%; and 35%, 14%, and 56%, respectively) for plants under B30G30R60 supplemental lighting compared with plants under B25R95 supplemental lighting. The most compact cucumber and pepper transplants were those grown under B25R95 supplemental lighting, and the most compact tomatoes were those grown under the HPS25 (control) and B25R95 supplemental lighting. Tomato transplants under treatments providing ≥30 μmol·m−2·s−1 of G radiation had an increased incidence of leaf necrosis. From this study, we conclude that plant responses to supplemental lighting quality are generally genera-specific, and therefore high-wire transplants should be separated by genera to optimize production and quality. However, additional studies are required to provide complete LED supplemental lighting recommendations.


Author(s):  
V. Dumych ◽  

The purpose of research: to improve the technology of growing flax in the Western region of Ukraine on the basis of the introduction of systems for minimizing tillage, which will increase the yield of trusts and seeds. Research methods: field, laboratory, visual and comparative calculation method. Research results: Field experiments included the study of three tillage systems (traditional, canning and mulching) and determining their impact on growth and development and yields of trusts and flax seeds. The traditional tillage system included the following operations: plowing with a reversible plow to a depth of 27 cm, cultivation with simultaneous harrowing and pre-sowing tillage. The conservation system is based on deep shelfless loosening of the soil and provided for chiseling to a depth of 40 cm, disking to a depth of 15 cm, cultivation with simultaneous harrowing, pre-sowing tillage. During the implementation of the mulching system, disking to a depth of 15 cm, cultivation with simultaneous harrowing and pre-sowing tillage with a combined unit was carried out. Tillage implements and machines were used to perform tillage operations: disc harrow BDVP-3,6, reversible plow PON-5/4, chisel PCh-3, cultivator KPSP-4, pre-sowing tillage unit LK-4. The SZ-3,6 ASTPA grain seeder was used for sowing long flax of the Kamenyar variety. Simultaneously with the sowing of flax seeds, local application of mineral fertilizers (nitroammophoska 2 c/ha) was carried out. The application of conservation tillage allows to obtain the yield of flax trust at the level of 3,5 t/ha, which is 0,4 t/ha (12.9 %) more than from the area of traditional tillage and 0,7 t/ha (25 %) in comparison with mulching. In the area with canning treatment, the seed yield was the highest and amounted to 0,64 t/ha. The difference between this option and traditional and mulching tillage reaches 0,06 t/ha (10,3 %) and 0.10 t/ha (18.5 %), respectively. Conclusions. Preservation tillage, which is based on shelf-free tillage to a depth of 40 cm and disking to a depth of 15 cm has a positive effect on plant growth and development, yield and quality of flax.


Author(s):  
Juliana Widyastuti Wahyuningsih Juliana Widyastuti Wahyuningsih

ABSTRAK Tidur merupakan kebutuhan yang harus terpenuhi terutama pada fase perkembangan karena selama tidur akan terjadi perkembangan otak maupun tubuh, sehingga gangguan tidur merupakan masalah yang akan menimbulkan dampak buruk terhadap pertumbuhan dan perkembangan bayi. Kualitas tidur bayi yang baik dapat diciptakan dengan memberikan pemijatan bayi secara rutin. Penelitian ini bertujuan untuk membuktikan bahwa pemijatan dapat mempengaruhi kualitas tidur bayi umur 0-3 bulan. Penelitian ini menggunakan desain penelitian Quasy Eksperimental dengan metode One Group Pretest-Postest. Sampel 22 bayi yang dipilih dengan tehnik Total Sampling yang di observasi sebelum dan sesudah diberikan pemijatan. Variabel yang diukur dalam penelitian ini adalah kualitas tidur bayi 0-3 bulan. Hasil penelitian menunjukkan bahwa ada pengaruh pijat bayi terhadap kualitas tidur bayi umur 0-3 bulan (p value  0,008 < α = 0,05).Berdasarkan hasil penelitian ini disarankan agar keluarga dan masyarakat memberikan pemijatan secara rutin dan mandiri untuk meningkatkan kebutuhan tidur bayi yang berkualitas.   ABSTRACT Sleep is a human necessity that must be met, especially in the development phase because during sleep will occur the brain and body developments, so that sleep disturbance is a problem that would cause adverse effects on infants’ growth and development. The good quality of sleep can be created by providing the infants massage routinely. This study aimed to prove that the massage could affect the quality of sleep on the 0-3 months old baby. This study used Quasy-experimental design with One Group Pretest-Posttest. The sample 22 infants selected by total sampling technique observed on before and after the massage. The variables measured in this study are the quality of sleep. The results of study indicate that there is an effect of infant massage to the sleep quality on 0-3 months old babies (p value 0,008 < α = 0,05).Based on the results of this study it recommended for the families and communities to provide infant massage regularly and independently to increase the quality of sleep on the baby.  


Among the animals of different species chickens react in greater numbers and more noticeable to a va-riety of growth biostimulators. There are great improvements on their general state, growth spurts and development of internal organs is quicker when they are injected with small portions. Such stimulation has a great influence not only on growth and development of chickens in their first period of life but also on health and productivity later on. The most active peak of reaction is when chicken is two months old. Their internal organs, especially the digestive system, develop earlier, their genitals appear earlier and they begin egg-laying much earlier too, when chickens are being fed those biostimulants. Slaughter meat yield becomes more and quality of meat improves with the influence of stimulators. A major disease pre-vention and healing effect can be reached, since most of the biostimulants raise immune system and re-sistance of the organism. It can be the only thing to justify their usage on animals. Tests show that the most typical growth spurt of birds is from fifteen to twenty percent in normal conditions. Growth spurts are also accompanied with the rise of resistance to different infections and activation of different physio-logical processes. Growth spurts can be twice or more than written here, but those spurts are usually short-timed and often accompanied with the dysfunction of different organs


Sign in / Sign up

Export Citation Format

Share Document