scholarly journals Changes in Blood Metabolites, Intestinal Microbiota Composition and Gene Expression of 95 Weeks Old Laying Hens Differing in Egg Production and Egg Breaking Strength

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3012
Author(s):  
Dirkjan Schokker ◽  
Jeroen Visscher ◽  
Henri Woelders

Herein, we investigated to what extent molecular phenotypes of the systemic level (blood) and local (intestine) are associated with the performance of laying hens at 95 weeks of age. After the trial had run for 95 weeks, two performance groups were generated, i.e., egg production (PROD) and egg breaking strength (BS). A subset of 21 cages, 116 hens, was measured to indicate the metabolism and disease status. Additionally, a focus group (four cages) was made to perform molecular phenotyping in the intestine. A notifiable observation made during the post-mortem dissection was that approximately 12% of the birds at 95 weeks had developed certain aberrations and/or impairments (denoted as organ morbidity). At the systemic level, we observed five metabolites (γGT, triglycerides, HDL, glucose, and cholesterol) significantly associated to organ morbidity, and only two metabolites (urea and aspartate aminotransferase) to the performance phenotypes. At the local level, when comparing high PROD vs. low PROD, we observed differentially expressed genes involved in cell cycle processes and the extracellular matrix. When comparing high BS vs. low BS differentially, expressed genes were observed mainly involved in immune and cell cycle-related processes. This knowledge is crucial for developing novel strategies of keeping laying hens vital.

2021 ◽  
Author(s):  
Haiyun Luo ◽  
Wenjing Liu ◽  
Yanli Zhang ◽  
Xiao Jiang ◽  
Shiqing Wu ◽  
...  

Abstract Background: Dental pulp stem cells (DPSCs) exhibited self-renewal, pluripotency capacity and served as promising cells source in endodontic regeneration and tissue engineering. Meanwhile, the regenerative capacity of DPSCs is limited and reduced in long lifespan. N6-methyladenosine (m6A) is the most prevalent, reversible internal modification in RNAs. The methyltransferases complex and demethylases mediated m6A methylation and cooperated to impact various biological processes associated with stem cell fate determination. However, the biological effect of m6A methylation in DPSCs remained unclear. Methods: Cell surface markers and differentiation potential of primary DPSCs were identified and m6A immunoprecipitation with deep sequencing (m6A RIP-seq) was used to uncover characteristics of m6A modifications in DPSCs transcriptome. Expression level of m6A-related genes were evaluated in immature/mature pulp tissues and cells. Lentiviral vectors were constructed to knockdown or overexpress methyltransferase like 3 (METTL3). Cell morphology, viability, senescence and apoptosis were further analyzed by β-galactosidase, TUNEL staining and flow cytometry. Bioinformatic analysis combing m6A RIP and shMETTL3 RNA-seq was used to functionally enrich overlapped genes and screen target of METTL3. Cell cycle distributions were assayed by flow cytometry and m6A RIP-qPCR was used to confirm METTL3 mediated m6A methylation in DPSCs. Results: Here, m6A peaks distribution, binding area and motif in DPSCs were first revealed by m6A RIP-seq. We also found a relative high expression level of METTL3 in immature DPSCs with superior regenerative potential and METTL3 knockdown induced cell apoptosis and senescence. Furthermore, Conjoint analysis of m6A RIP and RNA-sequencing showed differentially expressed genes affected by METTL3 depletion was mainly enriched in cell cycle, mitosis and alteration of METTL3 expression resulted in cell cycle arrest which indicated METTL3 make essential effect in cell cycle control. To further investigate underlying mechanisms, we explored proteins interaction network of differentially expressed genes and Polo-like Kinase 1 (PLK1), a critical cycle modulator was identified as target of METTL3-mediated m6A methylation in DPSCs. Conclusions: These results revealed m6A methylated hallmarks in DPSCs and a regulatory role of METTL3 in cell cycle control. Our study shed light on therapeutic approaches in vital pulp therapy and serve new insight in stem cells based tissue engineering.


2015 ◽  
Vol 112 (25) ◽  
pp. 7743-7748 ◽  
Author(s):  
Muhammad Akhtar Ali ◽  
Shady Younis ◽  
Ola Wallerman ◽  
Rajesh Gupta ◽  
Leif Andersson ◽  
...  

The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle–related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-β, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jing Yang ◽  
Chaoqin Chen ◽  
Xiaoyuan Jin ◽  
Lu Liu ◽  
Jiajia Lin ◽  
...  

BackgroundDepression is a prevalent mental disorder, which is difficult to diagnose and treat due to its unclear pathogenic mechanisms. The discovery of novel and effective therapeutic targets for depression is urgently needed. The hippocampus is a crucial region involved in depression and has been a therapeutic target for many antidepressants. Thus, it is beneficial for comprehensive research to be carried out on the molecular mechanisms of the hippocampus involved in the pathogenesis of depression. This study aims to investigate the differentially expressed genes (DEG) in the hippocampus in a chronic unpredictable mild stress (CUMS) mouse model.MethodThe study obtained GSE84183 from the GEO database. The R language screened the differential expression genes (DEG) in the hippocampus tissue of depressed mice, and the enrichment pathways of DEGs were analyzed. A protein-protein interaction (PPI) network was constructed in the STRING database and visualized in Cytoscape software. MicroRNAs for these DEGs were obtained from TarBase and mortar base databases, and transcription factors (TF) related to DEG were predicted from the ENCODE database. Both networks used the visual analysis platform NetworkAnalyst. Finally, the microRNA-TF network was integrated based on the above two networks and imported into Cytoscape for further analysis.ResultsThis study screened 325 differentially expressed genes, containing 42 downregulated genes and 283 upregulated genes. Most of these genes are enriched in the cell cycle and the chemokine signaling pathway. Meanwhile, Wfs1, one of the top ten DEGs, was identified as the key regulator of the cell cycle and the participator in the highest number of modules screened out in PPI networks. Wfs1-related molecules, including UBTF, mmu-mir-17-5p, and mmu-mir-7b-5p, were therefore screened out. Furthermore, we confirmed the downregulation of Wfs1 and upregulation of UBTF/mmu-mir-17-5p/mmu-mir-7b-5p in the hippocampus of the CUMS mouse model. Our data indicate that Wfs1 and related molecules were predicted to be associated with the pathological process of depression. This research provided potential new molecular targets of stress-induced depression.


2021 ◽  
Author(s):  
Yuxuan HUANG ◽  
Ge CUI

Abstract Aims: To utilize the bioinformatics to analyze the differentially expressed genes (DEGs), interaction proteins, perform gene enrichment analysis, protein-protein interaction network (PPI) and map the hub genes between colorectal cancer(CRC) and colorectal adenocarcinomas(CA).Methods: We analyzed a microarray dataset (GSE32323 and GSE4183) from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in tumor tissues and non-cancerous tissues were identified using the dplyr and Venn diagram packages of the R Studio software. Functional annotation of the DEGs was performed using the Gene Ontology (GO) website. Pathway enrichment (KEGG) used the WebGestalt to analyze the data and R Studio to generate the graph. We constructed a protein–protein interaction (PPI) network of DEGs using STRING and Cytoscape software was used for visualization. Survival analysis of the hub genes and was performed using the online platform GEPIA to determine the prognostic value of the expression of hub genes in cell lines from CRC patients. The expression of molecules with prognostic values was validated on the UALCAN database. The expression of hub genes was examined using the Human Protein Atlas. Results: Applying the GEO2R analysis and R studio, we identified a total of 471 upregulated and 278 downregulated DEGs. By using the online database WebGestalt, we identified the most relevant biological networks involving DEGs with statistically significant differences in expression were mainly associated with biological processes involved in the cell proliferation, cell cycle transition, cell homeostasis and indicated the role of each DEGs in cell cycle regulation pathways. We found 10 hub genes with prognostic values were overexpressed in the CRC and CA samples.Conclusion: we found out ten hub genes and three core genes closely associated with the pathogenesis and prognosis of CRC and CA, which is of great significance for colorectal tumor early detection and prognosis evaluation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1371-1371
Author(s):  
Andrew Schuldenfrei ◽  
Amy Belton ◽  
Jeanne Kowalski ◽  
C. Conover Talbot ◽  
Francescopaolo Di Cello ◽  
...  

Abstract Abstract 1371 Although the high mobility group AT-hook 1 (HMGA1) gene functions as a potent oncogene in experimental models and high expression of HMGA1 portends a poor prognosis in diverse tumors, its role in leukemogenesis has remained elusive. We showed previously that HMGA1 induces leukemic transformation in cultured cells and causes aggressive lymphoid leukemia in transgenic mice. Inhibiting HMGA1 expression blocks colony formation in human lymphoid leukemia cells in vitro. Moreover, high levels correlate with relapse in childhood acute lymphoblastic leukemia (ALL), suggesting that it plays an important role in ALL. Because HMGA1 functions as a chromatin remodeling protein that modulates gene expression, we hypothesized that it drives leukemogenesis by dysregulating specific genes and pathways. To identify genes and cellular pathways induced by HMGA1 that could be targeted in therapy, we performed global gene expression profile analysis from lymphoid cells from the HMGA1 transgenic mice at different stages in tumorigenesis. All HMGA1 transgenics succumb to lymphoid malignancy with complete penetrance by 8–12 months. Pooled RNA samples at 2 months (before tumors develop) and 12 months (after tumors are well-established) were analyzed for differential expression of >20,000 unique genes by microarray analysis (Affymetrix) using both a parametric and nonparametric approach. A subset of differentially expressed genes was confirmed using quantitative, RT-PCR. Differentially expressed genes were analyzed for cellular pathways and functions using Ingenuity Pathway Analysis (IPA; www.ingenuity.com) and Gene Set Enrichment Analysis. To determine if these genes and pathways were relevant in human ALL, we knocked down HMGA1 expression in human ALL cells and assessed expression of a subset of the differentially expressed genes. Early in leukemogenesis (at 2 months), 113 genes were differentially expressed in the HMGA1 transgenics compared to controls. In established leukemia (12 months), 715 genes were differentially expressed. In established tumors, the dysregulated genes are involved in cancer, cell cycle regulation, and cell-mediated immune response by Ingenuity Pathway Analysis. Geneset enrichment showed that embryonic stem cell genes are enriched in the established leukemic cells. At both early and late stages in leukemogenesis, differentially regulated genes are involved in cellular development, hematopoiesis, and hematologic development. Early in leukemogenesis, most of the significantly dysregulated genes are involved in the inflammatory response and included NF-kappaB as a major node. In human ALL cells, knock-down of HMGA1 also resulted in knock-down of genes identified in our transgenic model, suggesting that these HMGA1 regulated genes are also relevant to human ALL. In summary, we found that HMGA1 induces inflammatory pathways early in leukemogenesis and pathways involved in embryonic stem cells, cell cycle progression, and cancer in established tumors. HMGA1 also dysregulates genes involved in cellular development and hematopoiesis at both early and late stages of tumorigenesis. Some of these HMGA1 pathways were also present in human ALL cells. Moreover, these results provide mechanistic insight into HMGA1 function at different stages in leukemogenesis and point to cellular pathways that could serve as therapeutic targets in ALL. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 316 (2) ◽  
pp. E196-E209 ◽  
Author(s):  
Jennifer S. Stancill ◽  
Anna B. Osipovich ◽  
Jean-Philippe Cartailler ◽  
Mark A. Magnuson

Fluorescent protein reporter genes are widely used to identify and sort murine pancreatic β-cells. In this study, we compared use of the MIP-GFP transgene, which exhibits aberrant expression of human growth hormone (hGH), with a newly derived Ins2Apple allele that lacks hGH expression on the expression of sex-specific genes. β-Cells from MIP-GFP transgenic mice exhibit changes in the expression of 7,733 genes, or greater than half of their transcriptome, compared with β-cells from Ins2Apple/+ mice. To determine how these differences might affect a typical differential gene expression study, we analyzed the effect of sex on gene expression using both reporter lines. Six hundred fifty-seven differentially expressed genes were identified between male and female β-cells containing the Ins2Apple allele. Female β-cells exhibit higher expression of Xist, Tmed9, Arpc3, Eml2, and several islet-enriched transcription factors, including Nkx2-2 and Hnf4a, whereas male β-cells exhibited a generally higher expression of genes involved in cell cycle regulation. In marked contrast, the same male vs. female comparison of β-cells containing the MIP-GFP transgene revealed only 115 differentially expressed genes, and comparison of the 2 lists of differentially expressed genes revealed only 17 that were common to both analyses. These results indicate that 1) male and female β-cells differ in their expression of key transcription factors and cell cycle regulators and 2) the MIP-GFP transgene may attenuate sex-specific differences that distinguish male and female β-cells, thereby impairing the identification of sex-specific variations.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Lorena Zubovic ◽  
Silvano Piazza ◽  
Toma Tebaldi ◽  
Luca Cozzuto ◽  
Giuliana Palazzo ◽  
...  

Abstract Pediatric myelodysplastic syndrome (PMDS) is a very rare and still poorly characterized disorder. In this work, we identified novel potential targets of PMDS by determining genes with aberrant expression, which can be correlated with PMDS pathogenesis. We identified 291 differentially expressed genes (DEGs) in PMDS patients, comprising genes involved in the regulation of apoptosis and the cell cycle, ribosome biogenesis, inflammation and adaptive immunity. Ten selected DEGs were then validated, confirming the sequencing data. These DEGs will potentially represent new molecular biomarkers and therapeutic targets for PMDS.


Toxins ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 290 ◽  
Author(s):  
Xueqin Liu ◽  
Shailendra Kumar Mishra ◽  
Tao Wang ◽  
Zhongxian Xu ◽  
Xiaoling Zhao ◽  
...  

Aflatoxin B1 (AFB1) leads to a major risk to poultry and its residues in meat products can also pose serious threat to human health. In this study, after feeding 165-day-old Roman laying hens for 35 days, the toxic effects of aflatoxin B1 at different concentrations were evaluated. The purpose of this study was to explore the mechanism of liver toxicosis responses to AFB1. We found that highly toxic group exposure resulted in liver fat deposition, increased interstitial space, and hepatocyte apoptosis in laying hens. Furthermore, a total of 164 differentially expressed lnRNAs and 186 differentially expressed genes were found to be highly correlated (Pearson Correlation Coefficient > 0.80, p-value < 0.05) by sequencing the transcriptome of control (CB) and highly toxic group (TB3) chickens. We also identify 29 differentially expressed genes and 19 miRNAs that have targeted regulatory relationships. Based on the liver cell apoptosis and fatty liver syndrome that this research focused on, we found that the highly toxic AFB1 led to dysregulation of the expression of PPARG and BCL6. They are cis-regulated by TU10057 and TU45776, respectively. PPARG was the target gene of gga-miR-301a-3p, gga-miR-301b-3p, and BCL6 was the target gene of gga-miR-190a-3p. In summary, highly toxic AFB1 affects the expression levels of protein-coding genes and miRNAs in the liver of Roman layer hens, as well as the expression level of long non-coding RNA in the liver, which upregulates the expression of PPARG and downregulates the expression of Bcl-6. Our study provides information on possible genetic regulatory networks in AFB1-induced hepatic fat deposition and hepatocyte apoptosis.


Sign in / Sign up

Export Citation Format

Share Document