scholarly journals Pursuing the Elixir of Life: In Vivo Antioxidative Effects of Manganosalen Complexes

Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 727
Author(s):  
Lara Rouco ◽  
Ana M. González-Noya ◽  
Rosa Pedrido ◽  
Marcelino Maneiro

Manganosalen complexes are coordination compounds that possess a chelating salen-type ligand, a class of bis-Schiff bases obtained by condensation of salicylaldehyde and a diamine. They may act as catalytic antioxidants mimicking both the structure and the reactivity of the native antioxidant enzymes active site. Thus, manganosalen complexes have been shown to exhibit superoxide dismutase, catalase, and glutathione peroxidase activities, and they could potentially facilitate the scavenging of excess reactive oxygen species (ROS), thereby restoring the redox balance in damaged cells and organs. Initial catalytic studies compared the potency of these compounds as antioxidants in terms of rate constants of the chemical reactivity against ROS, giving catalytic values approaching and even exceeding that of the native antioxidative enzymes. Although most of these catalytic studies lack of biological relevance, subsequent in vitro studies have confirmed the efficiency of many manganosalen complexes in oxidative stress models. These synthetic catalytic scavengers, cheaper than natural antioxidants, have accordingly attracted intensive attention for the therapy of ROS-mediated injuries. The aim of this review is to focus on in vivo studies performed on manganosalen complexes and their activity on the treatment of several pathological disorders associated with oxidative damage. These disorders, ranging from the prevention of fetal malformations to the extension of lifespan, include neurodegenerative, inflammatory, and cardiovascular diseases; tissue injury; and other damages related to the liver, kidney, or lungs.

Author(s):  
Lara Rouco ◽  
Ana M. Gonzalez-Noya ◽  
Rosa Pedrido ◽  
Marcelino Maneiro

Manganosalen complexes are coordination compounds that possess a chelating salen-type ligand, a class of bis-Schiff bases obtained by condensation of salicylaldehyde and a diamine. They may act as catalytic antioxidants mimicking both the structure and the reactivity of the native antioxidant enzymes active site. Thus, manganosalen complexes have shown to exhibit superoxide dismutase, catalase, and glutathione peroxidase activities, and they could potentially facilitate the scavenging of excess ROS, thereby restoring the redox balance in the damaged cells and organs. Initial catalytic studies compared the potency of these compounds as antioxidants in terms of rate constants of the chemical reactivity against ROS, giving catalytic values approaching and even exceeding that of the native antioxidative enzymes. Although most of these catalytic studies lack of biological relevance, subsequent in vitro studies have confirmed the efficiency of many manganosalen complexes in oxidative stress models. These synthetic catalytic scavengers, cheaper than natural antioxidants, have accordingly attracted intensive attention for the therapy of ROS-mediated injuries. The aim of this review is to focus on in vivo studies performed on manganosalen complexes and their activity on the treatment of several pathological disorders associated with oxidative damage. This disorders, ranging from the prevention of fetal malformations to the extension of lifespan, include neurodegenerative, inflammatory and cardiovascular diseases, tissue injury, and other damages related to liver, kidney or lungs.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 952
Author(s):  
Małgorzata Chrząszcz ◽  
Barbara Krzemińska ◽  
Rafał Celiński ◽  
Katarzyna Szewczyk

The genus Cephalaria, belonging to the Caprifoliaceae family, is a rich source of interesting secondary metabolites, including mainly saponins which display a variety of biological activities, such as immunomodulatory, antimicrobial and hemolytic effects. Besides these compounds, flavonoids and phenolic acids were identified in Cephalaria species. Cephalaria is employed in traditional medicine e.g., to cure cardiac and lung diseases, rheumatism, and regulate menstruation. In this review we focus on the phenolic compound composition and antioxidative activity of Cephalaria species. The antioxidant effect can be explained by flavonoids present in all parts of these plants. However, future efforts should concentrate more on in vitro and in vivo studies and also on clinical trials in order to confirm the possibility of using these plants as natural antioxidants for the pharmacology, food or cosmetic industries.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1019 ◽  
Author(s):  
Nur Zuliani Ramli ◽  
Mohamad Fairuz Yahaya ◽  
Ikuo Tooyama ◽  
Hanafi Ahmad Damanhuri

Nutraceuticals have been extensively studied worldwide due to its neuroprotective effects in in vivo and in vitro studies, attributed by the antioxidative properties. Alzheimer (AD) and Parkinson disease (PD) are the two main neurodegenerative disorders that are discussed in this review. Both AD and PD share the similar involvement of oxidative stress in their pathophysiology. Nutraceuticals exert their antioxidative effects via direct scavenging of free radicals, prevent damage to biomolecules, indirectly stimulate the endogenous antioxidative enzymes and gene expressions, inhibit activation of pro-oxidant enzymes, and chelate metals. In addition, nutraceuticals can act as modulators of pro-survival, pro-apoptotic, and inflammatory signaling pathways. They have been shown to be effective particularly in preclinical stages, due to their multiple mechanisms of action in attenuating oxidative stress underlying AD and PD. Natural antioxidants from food sources and natural products such as resveratrol, curcumin, green tea polyphenols, and vitamin E are promising therapeutic agents in oxidative stress-mediated neurodegenerative disease as they have fewer adverse effects, more tolerable, cheaper, and sustainable for long term consumption.


Planta Medica ◽  
2018 ◽  
Vol 84 (18) ◽  
pp. 1318-1333 ◽  
Author(s):  
Ligen Lin ◽  
Fayang Zhou ◽  
Shengnan Shen ◽  
Tian Zhang

AbstractLiver fibrosis is a wound-healing response characterized by the accumulation of extracellular matrix following various liver injuries, which results in the deformation of the normal liver architecture and the development of liver cirrhosis and even hepatocellular carcinoma. Numerous in vitro and in vivo studies indicated that oxidative stress mediates the initiation and progression of liver fibrosis. Overaccumulation of reactive oxygen species disrupts macromolecules, induces necrosis and apoptosis of hepatocytes, stimulates the production of pro-fibrogenic mediators, and directly activates hepatic stellate cells, thereby resulting in liver damage and initiating liver fibrosis. Ameliorating oxidative stress is a potential therapeutic strategy for the treatment of liver fibrosis. Natural antioxidants have attracted increasing attention in treating liver fibrosis due to their safety and efficacy. In this review, the pathogenesis of liver fibrosis and the role of oxidative stress in liver fibrosis were discussed. Naturally occurring antioxidants that can treat and prevent liver fibrosis were summarized. Advances in clinical trials were also presented. The main purpose of this review is to provide a comprehensive and up-to-date knowledge from the biological importance of oxidative stress in liver fibrosis to representative antioxidants for treating liver fibrosis. Naturally occurring antioxidants show a potential for further investigations as lead compounds in fighting liver fibrosis.


2021 ◽  
Author(s):  
Pedro Ferreira-Santos ◽  
Zlatina Genisheva ◽  
Claudia Botelho ◽  
Cristina Rocha ◽  
José António Teixeira

The significant increase in the world population age, 47 years in 1950 to 73 years in 2020, resulted in an increase in aging related diseases as well as in degenerative diseases. In consequence, researchers have been focusing in the development of new therapies, with a particular emphasis on the use of compounds with antioxidant properties, namely phytochemicals, such as polyphenols and carotenoids. Several in vitro and in vivo studies have demonstrated the phytochemicals antioxidant capacity. Their use is broad, as they can be part of food supplements, medicine and cosmetics. The health benefit of antioxidant phytochemicals is an indisputable question. Phytochemical properties are highly influenced by the natural matrix as well as by extraction process, which have a key role. There are several extraction methods that can be applied depending on the chemical properties of the bioactive compounds. There is a wide range of solvents with different polarities, which allows a selective extraction of the desired target family of compounds. Greener technologies have the advantage to reduce extraction time and solvent quantity in comparison to the most traditional methods. This chapter will focus on the different green extraction strategies related to the recovery of antioxidant bioactive compounds from natural sources, their nutritional and health potential.


Author(s):  
Kady Diatta ◽  
William Diatta ◽  
Alioune Dior Fall ◽  
Serigne Ibra Mbacké Dieng ◽  
Amadou Ibrahima Mbaye ◽  
...  

Background : Nowadays with the appearance of diseases such as cancer, atherosclerosis, free radicals are often singled out. What motivates scientific research in natural antioxidants. Aim/Objective : The aim of this study was to determine the antioxidant activity of the stalks and the fruit of Solanum melongena L. Study Duration : The period of the study was done on 25th July, 2015 at the Department of Pharmacy, Faculty of Medecine, Pharmacy and Odontology, University of Dakar, Senegal. Methodology : Antioxidant activity was evaluated through two methods (DPPH and FRAP). Results : For the FRAP test, at the highest concentration (83.3 µg/ml) the aqueous extract of the fruit (0.90±0.08) has a higher reducing power compared to those of ethanol extracts from the fruit (0.77±0.41) and the stalk (0.85±0.004). These results remain inferior to that of tannic acid (0.95± 0.0005). The DPPH test reveals that the ethanolic extract of the fruit is more effective in reducing the free radical DPPH with an inhibitory concentration 50 (IC 50) equal to 3.37±0.03 μg / ml, followed by the ethanolic extract of the stalks (IC 50 = 4.46±0.24 μg / ml) and finally the aqueous extract of the fruit (IC50 = 9.6±0.026 μg / ml). Conclusion : These results make it possible to confirm the in vitro activity of the parts studied, but in vivo studies are necessary in order to know the acute and chronic toxicities. Finally, perform a bio-guided fractionation to determine the molecules responsible for the antioxidant activity.


2017 ◽  
Vol 2 (2) ◽  
pp. 142 ◽  
Author(s):  
R. Kumar ◽  
S. Vijayalakshmi ◽  
S. Nadanasabapathi

<p>Flavonoids are natural antioxidants derived from plant pigments and commonly found in agricultural produce such as fruits, vegetables, and also in beverages like tea and wine. Quercetin is the most important flavonoid which belongs to the class of flavonol. Quercetin is a vital biologically active compound, which is present in many products, such as onion (<em>Allium cepa</em>), black tea (<em>Camellia sinensis</em>), Broccoli (<em>Brassica oleracea</em> var<em>. italic</em>), and also in red wine and green tea, It is widely used in medicine and pharmaceutics. In particular, it is used for cancer treatment; as it restrains the growth of cancer cells. Earlier some of computational investigations of this molecule were reported in literature, but they were made at low theory level. Quercetin provided many health promoting benefits, like cardiovascular properties, cancer reducing agent, Anti-inflammatory, asthma and many more. That is why the further investigation of this molecule is important. The main important of this review is to understanding of the structure of quercetin and corresponding biological properties of quercetin expressed in vitro studies, absorption is critical, but in vivo studies, better absorbed antioxidant were observed like vitamin C, further reported studies on effect of food processing, health benefits, storage effects, and evaluate its safety and dosage.</p>


2020 ◽  
Vol 27 ◽  
Author(s):  
Tsun-Thai Chai ◽  
Kah-Yaw Ee ◽  
D. Thirumal Kumar ◽  
Fazilah Abdul Manan ◽  
Fai-Chu Wong

Abstract: Large numbers of bioactive peptides with potential applications in protecting against human diseases have been identified from plant sources. In this review, we summarized recent progress in the research of plant-derived bioactive peptides, encompassing their production, biological effects, and mechanisms. This review focuses on antioxidant, antimicrobial, antidiabetic, and anticancer peptides, giving special attention to evidence derived from cellular and animal models. Studies investigating peptides with known sequences and well-characterized peptidic fractions or protein hydrolysates will be discussed. The use of molecular docking tools to elucidate inter-molecular interactions between bioactive peptides and target proteins is highlighted. In conclusion, the accumulating evidence from in silico, in vitro and in vivo studies to date supports the envisioned applications of plant peptides as natural antioxidants as well as health-promoting agents. Notwithstanding, much work is still required before the envisioned applications of plant peptides can be realized. To this end, future researches for addressing current gaps were proposed.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4442
Author(s):  
Tania Gómez-Sierra ◽  
Omar Noel Medina-Campos ◽  
José D. Solano ◽  
María Elena Ibarra-Rubio ◽  
José Pedraza-Chaverri

Isoliquiritigenin (IsoLQ) is a flavonoid with antioxidant properties and inducer of endoplasmic reticulum (ER) stress. In vitro and in vivo studies show that ER stress-mediated hormesis is cytoprotective; therefore, natural antioxidants and ER stress inducers have been used to prevent renal injury. Oxidative stress and ER stress are some of the mechanisms of damage involved in cisplatin (CP)-induced nephrotoxicity. This study aims to explore whether IsoLQ pretreatment induces ER stress and produces hormesis to protect against CP-induced nephrotoxicity in Lilly Laboratories Cell-Porcine Kidney 1 (LLC-PK1) cells. During the first stage of this study, both IsoLQ protective concentration and pretreatment time against CP-induced toxicity were determined by cell viability. At the second stage, the effect of IsoLQ pretreatment on cell viability, ER stress, and oxidative stress were evaluated. IsoLQ pretreatment in CP-treated cells induces expression of glucose-related proteins 78 and 94 kDa (GRP78 and GRP94, respectively), attenuates CP-induced cell death, decreases reactive oxygen species (ROS) production, and prevents the decrease in glutathione/glutathione disulfide (GSH/GSSG) ratio, free thiols levels, and glutathione reductase (GR) activity. These data suggest that IsoLQ pretreatment has a moderately protective effect on CP-induced toxicity in LLC-PK1 cells, through ER stress-mediated hormesis, as well as by the antioxidant properties of IsoLQ.


Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 362 ◽  
Author(s):  
Michela Verni ◽  
Vito Verardo ◽  
Carlo Rizzello

The major role of antioxidant compounds in preserving food shelf life, as well as providing health promoting benefits, combined with the increasing concern towards synthetic antioxidants, has led the scientific community to focus on natural antioxidants present in food matrices or resulting from microbial metabolism during fermentation. This review aims at providing a comprehensive overview of the effect of fermentation on the antioxidant compounds of vegetables, with emphasis on cereals- and legumes- derived foods. Polyphenols are the main natural antioxidants in food. However, they are often bound to cell wall, glycosylated, or in polymeric forms, which affect their bioaccessibility, yet several metabolic activities are involved in their release or conversion in more active forms. In some cases, the antioxidant properties in vitro, were also confirmed during in vivo studies. Similarly, bioactive peptides resulted from bacterial and fungal proteolysis, were also found to have ex vivo protective effect against oxidation. Fermentation also influenced the bioaccessibility of other compounds, such as vitamins and exopolysaccharides, enabling a further improvement of antioxidant activity in vitro and in vivo. The ability of fermentation to improve food antioxidant properties strictly relies on the metabolic activities of the starter used, and to further demonstrate its potential, more in vivo studies should be carried out.


Sign in / Sign up

Export Citation Format

Share Document