scholarly journals Self-Powered, Hybrid, Multifunctional Sensor for a Human Biomechanical Monitoring Device

2021 ◽  
Vol 11 (2) ◽  
pp. 519
Author(s):  
Yeh Hsin Lu ◽  
Hsiao Han Lo ◽  
Jie Wang ◽  
Tien Hsi Lee ◽  
Yiin Kuen Fuh

For personal and daily activities, it is highly desirable to collect energy from multiple sources, not only for charging personal electronics but also for charging devices that may in the future sense and transmit information for healthcare and biomedical applications. In particular, hybridization of triboelectric and piezoelectric energy-harvesting generators with lightweight components and relatively simple structures have shown promise in self-powered sensors. Here, we present a self-powered multifunctional sensor (SPMS) based on hybridization with a novel design of a piezoelectrically curved spacer that functions concurrently with a zigzag shaped triboelectric harvester for a human biomechanical monitoring device. The optimized SPMS had an open-circuit voltage (VOC) of 103 V, short-circuit current (ISC) of 302 µA, load of 100 kΩ, and maximum average power output of 38 mW under the operational processes of compression/deformation/touch/release. To maximize the new sensor’s usage as a gait sensor that can detect and monitor human motion characteristics in rehabilitation circumstances, the deep learning long short-term memory (LSTM) model was developed with an accuracy of the personal sequence gait SPMS signal recognition of 81.8%.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lingjie Xie ◽  
Xiaoping Chen ◽  
Zhen Wen ◽  
Yanqin Yang ◽  
Jihong Shi ◽  
...  

Abstract Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers. In this work, we fabricated a fiber-shaped stretchable and tailorable triboelectric nanogenerator (FST–TENG) based on the geometric construction of a steel wire as electrode and ingenious selection of silicone rubber as triboelectric layer. Owing to the great robustness and continuous conductivity, the FST–TENGs demonstrate high stability, stretchability, and even tailorability. For a single device with ~ 6 cm in length and ~ 3 mm in diameter, the open-circuit voltage of ~ 59.7 V, transferred charge of ~ 23.7 nC, short-circuit current of ~ 2.67 μA and average power of ~ 2.13 μW can be obtained at 2.5 Hz. By knitting several FST–TENGs to be a fabric or a bracelet, it enables to harvest human motion energy and then to drive a wearable electronic device. Finally, it can also be woven on dorsum of glove to monitor the movements of gesture, which can recognize every single finger, different bending angle, and numbers of bent finger by analyzing voltage signals.


Author(s):  
Guangya Ding ◽  
Hongjun Luo ◽  
Jun Wang ◽  
Guohui Yuan

A novel lever piezoelectric energy harvester (LPEH) was designed for installation in an actual roadway for energy harvesting. The model incorporates a lever module that amplifies the applied traffic load and transmits it to the piezoelectric ceramic. To observe the piezoelectric growth benefits of the optimized LPEH structure, the output characteristics and durability of two energy harvesters, the LPEH and a piezoelectric energy harvester (PEH) without a lever, were measured and compared by carrying out piezoelectric performance tests and traffic model experiments. Under the same loading condition, the open circuit voltages of the LPEH and PEH were 20.6 and 11.7 V, respectively, which represents a 76% voltage increase for the LPEH compared to the PEH. The output power of the LPEH was 21.51 mW at the optimal load, which was three times higher than that of the PEH (7.45 mW). The output power was linearly dependent on frequency and load, implying the potential application of the module as a self-powered speed sensor. When tested during 300,000 loading cycles, the LPEH still exhibited stable structural performance and durability.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhuang Hui ◽  
Ming Xiao ◽  
Daozhi Shen ◽  
Jiayun Feng ◽  
Peng Peng ◽  
...  

Abstract With the increase in the use of electronic devices in many different environments, a need has arisen for an easily implemented method for the rapid, sensitive detection of liquids in the vicinity of electronic components. In this work, a high-performance power generator that combines carbon nanoparticles and TiO2 nanowires has been fabricated by sequential electrophoretic deposition (EPD). The open-circuit voltage and short-circuit current of a single generator are found to exceed 0.7 V and 100 μA when 6 μL of water was applied. The generator is also found to have a stable and reproducible response to other liquids. An output voltage of 0.3 V was obtained after 244, 876, 931, and 184 μs, on exposure of the generator to 6 μL of water, ethanol, acetone, and methanol, respectively. The fast response time and high sensitivity to liquids show that the device has great potential for the detection of small quantities of liquid. In addition, the simple easily implemented sequential EPD method ensures the high mechanical strength of the device. This compact, reliable device provides a new method for the sensitive, rapid detection of extraneous liquids before they can impact the performance of electronic circuits, particularly those on printed circuit board.


2016 ◽  
Vol 2016 ◽  
pp. 1-14
Author(s):  
Guangqing Wang ◽  
Shuaishuai Gao ◽  
Xiaojun Li

A broadband piezoelectric energy harvester (BPEH), consisting of a conventional linear piezoelectric energy harvester (CPEH) and an elastic magnifier, was presented in this paper. The improved two-degree-of-freedom lumped-parameter electromechanical model of the BPEH was established and the optimal external resistances under short-circuit and open-circuit resonance conditions were investigated to maximize the output power of the BPEH. The output voltage and output power of the BPEH obtained from the theoretical model were verified and found to be in reasonable agreement with the experimental results. The obtained results have shown that the maximal output powers under short-circuit and open-circuit resonance conditions are both 24 times that generated by the CPEH without elastic magnifier. The frequency space between the two peaks of the frequency-response curve of the BPEH is 14 Hz which is 7 times that of CPEH.


2018 ◽  
Vol 27 (3) ◽  
pp. 035001 ◽  
Author(s):  
Min-Ook Kim ◽  
Soonjae Pyo ◽  
Yongkeun Oh ◽  
Yunsung Kang ◽  
Kyung-Ho Cho ◽  
...  

2019 ◽  
Vol 86 (1) ◽  
pp. 14-24 ◽  
Author(s):  
Manel Zouari ◽  
Slim Naifar ◽  
Ghada Bouattour ◽  
Nabil Derbel ◽  
Olfa Kanoun

AbstractSelf-powered energy management circuits make energy harvesting converters more efficient and more reliable. This paper presents an improvement of a Maximum Power Point Tracking (MPPT) technique applied on a Parallel Synchronized Switch Harvesting on Inductor (P-SSHI) technique for piezoelectric vibration converters. The aims are to detect the unstable vibrational state, optimize the output voltage and maximize the output power of the piezoelectric transducer.First, the P-SSHI technique is implemented without an MPPT technique. Then, an MPPT technique based on Fractional Open Circuit (FOC) voltage method is implemented. An improvement of the FOC method is proposed to enhance the capability of the Piezoelectric Energy Harvesting (PEH) system. The comparison between different simulation results shows that by using the same input parameters, the maximum efficiency for the PEH system based on the P-SSHI technique implemented without MPPT is 8.82 % whereas the maximum efficiency of the system based on the (FOC) voltage MPPT method is 13.77 %. A significant improvement of the PEH system is obtained by using the modified (FOC) method, where the efficiency reached 24.59 %.


Polymers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 803 ◽  
Author(s):  
Yang Zhao ◽  
Jiazheng Sheng ◽  
Di Xu ◽  
Minzhong Gao ◽  
Qinglong Meng ◽  
...  

An ionic polymer–metal composite (IPMC) is a kind of soft material. The applications of IPMC in actuators, environmental sensing, and energy harvesting are currently increasing rapidly. In this study, an ordered Nafion nanofibre mat prepared by electrospinning was used to investigate the characteristics of the mechanoelectrical transduction of IPMC. The morphologies of the Nafion nanofibre mat were characterized. The proton conductivity, ion exchange capacities, and water uptake potential of the Nafion nanofibre mat were compared to traditional IPMC, respectively. A novel mechanism of Nafion nanofibre IPMC was designed and the open circuit voltage and short circuit current were measured. The maximum voltage value reached 100 mv. The output power was 3.63 nw and the power density was up to 42.4 μW/Kg under the load resistance. The Nafion nanofibre mat demonstrates excellent mechanoelectrcical transduction behavior compared to traditional IPMC and could be used for the development of self-powered devices in the future.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 700 ◽  
Author(s):  
Kequan Xia ◽  
Zhiwei Xu ◽  
Zhiyuan Zhu ◽  
Hongze Zhang ◽  
Yong Nie

Recent years, triboelectric nanogenerators (TENGs) have attracted increased attention from researchers worldwide. Owing to their conductivity and triboelectric characteristics, metal materials can be made as both triboelectric materials and conductive electrodes. However, the surface of typical metals (such as copper, aluminum, and iron) is likely to be corroded when the sweat generated by human-body movement drops on the surface of TENGs, as this corrosion is detrimental to the output performance of TENGs. In this work, we proposed a novel corrosion-resistant copper–nickel based TENG (CN-TENG). Copper–nickel alloy conductive tape and polytetrafluoroethylene (PTFE) tape played the role of the triboelectric materials, and polymethyl methacrylate (PMMA) was utilized as the supporting part. The conductive copper–nickel alloy tape also served as a conductive electrode. The open-circuit voltage (VOC) and short-circuit current (ISC) can arrive at 196.8 V and 6 μA, respectively. Furthermore, peak power density values of 45 μW/cm2 were realized for the CN-TENG. A series of experiments confirmed its corrosion-resistant property. The approximate value of VOC for the fabricated TENG integrated into the shoe reached 1500 V, which is capable of driving at least 172 high-power LEDs in series. The results of this research provide a workable method for supporting corrosion-resistant self-powered wearable electronics.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
A. Erturk ◽  
D. J. Inman

Cantilevered beams with piezoceramic layers have been frequently used as piezoelectric vibration energy harvesters in the past five years. The literature includes several single degree-of-freedom models, a few approximate distributed parameter models and even some incorrect approaches for predicting the electromechanical behavior of these harvesters. In this paper, we present the exact analytical solution of a cantilevered piezoelectric energy harvester with Euler–Bernoulli beam assumptions. The excitation of the harvester is assumed to be due to its base motion in the form of translation in the transverse direction with small rotation, and it is not restricted to be harmonic in time. The resulting expressions for the coupled mechanical response and the electrical outputs are then reduced for the particular case of harmonic behavior in time and closed-form exact expressions are obtained. Simple expressions for the coupled mechanical response, voltage, current, and power outputs are also presented for excitations around the modal frequencies. Finally, the model proposed is used in a parametric case study for a unimorph harvester, and important characteristics of the coupled distributed parameter system, such as short circuit and open circuit behaviors, are investigated in detail. Modal electromechanical coupling and dependence of the electrical outputs on the locations of the electrodes are also discussed with examples.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012016
Author(s):  
M A Mujaahiid Lallmamode ◽  
A S Mahdi Al-Obaidi

Abstract For many years, the rate of energy consumption has been higher than the rate at which natural resources are being generated. Green energy is a major solution to achieve a sustainable future and mitigate carbon footprints. Today, the transport sector highly relies on fossil fuel, consuming nearly one-quarter of the total energy in developed countries and represents a massive environmental burden. Hence, the fate of future energy security does not solely lie in the efficient use of existing green energies but also in the development of new energy sources. This study proposed the design of thermoelectric and piezoelectric energy harvesting systems to make use of the huge thermal energy due to solar radiation and mechanical strain due to moving vehicles to generate electricity. Both systems were built at an experimental scale model and tested. The thermoelectric system produced an output power of 1.06 mW and an open-circuit voltage of 118.2 mV at a temperature difference of 14.8 °C. A maximum average power output of 1.55 mW is achieved over a period of 6h per day. The Piezoelectric generated a peak DC voltage of 9.83 V, under normal stress of 235.04 kPa. The results also showed that the piezoelectric system could provide a consistent output voltage as long as the system experience normal stress. The system could produce an output power of 0.2 mW.


Sign in / Sign up

Export Citation Format

Share Document