scholarly journals Distinct Chemistries Define the Diverse Biological Effects of Plasma Activated Water Generated with Spark and Glow Plasma Discharges

2021 ◽  
Vol 11 (3) ◽  
pp. 1178
Author(s):  
Evanthia Tsoukou ◽  
Maxime Delit ◽  
Louise Treint ◽  
Paula Bourke ◽  
Daniela Boehm

The spread of multidrug-resistant bacteria poses a significant threat to human health. Plasma activated liquids (PAL) could be a promising alternative for microbial decontamination, where different PAL can possess diverse antimicrobial efficacies and cytotoxic profiles, depending on the range and concentration of their reactive chemical species. In this research, the biological activity of plasma activated water (PAW) on different biological targets including both microbiological and mammalian cells was investigated in vitro. The aim was to further an understanding of the specific role of distinct plasma reactive species, which is required to tailor plasma activated liquids for use in applications where high antimicrobial activity is required without adversely affecting the biology of eukaryotic cells. PAW was generated by glow and spark discharges, which provide selective generation of hydrogen peroxide, nitrite and nitrate in the liquid. The PAW made by either spark or glow discharges showed similar antimicrobial efficacy and stability of activity, despite the very different reactive oxygen species (ROS) and reactive nitrogen species profiles (RNS). However, different trends were observed for cytotoxic activities and effects on enzyme function, which were translated through the selective chemical species generation. These findings indicate very distinct mechanisms of action which may be exploited when tailoring plasma activated liquids to various applications. A remarkable stability to heat and pressure was noted for PAW generated with this set up, which broadens the application potential. These features also suggest that post plasma modifications and post generation stability can be harnessed as a further means of modulating the chemistry, activity and mode of delivery of plasma functionalised liquids. Overall, these results further understanding on how PAL generation may be tuned to provide candidate disinfectant agents for biomedical application or for bio-decontamination in diverse areas.

Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


2019 ◽  
Author(s):  
Peter Spanogiannopoulos ◽  
Patrick H. Bradley ◽  
Jonathan Melamed ◽  
Ysabella Noelle Amora Malig ◽  
Kathy N. Lam ◽  
...  

Microbiome surveys indicate that pharmaceuticals are the top predictor of inter-individual variations in gut microbial community structure1, consistent with in vitro evidence that non-antibiotic (i.e. host-targeted) drugs inhibit gut bacterial growth2and are subject to extensive metabolism by the gut microbiome3,4. In oncology, bacterial metabolism has been implicated in both drug efficacy5,6and toxicity7,8; however, the degree to which bacterial sensitivity and metabolism can be driven by conserved pathways also found in mammalian cells remains poorly understood. Here, we show that anticancer fluoropyrimidine drugs broadly inhibit the growth of diverse gut bacterial strains. Media supplementation, transcriptional profiling (RNA-seq), and bacterial genetics implicated pyrimidine metabolism as a key target in bacteria, as in mammalian cells. Drug resistant bacteria metabolized 5FU to its inactive metabolite dihydrofluorouracil (DHFU) mimicking the major host pathway for drug clearance. Functional orthologs of the bacterial operon responsible (preTA) are widespread across human gut bacteria from the Firmicutes and Proteobacteria phyla. The observed conservation of both the targets and pathways for metabolism of therapeutics across domains highlights the need to distinguish the relative contributions of human and microbial cells to drug disposition9, efficacy, and side effect profiles.


1970 ◽  
Vol 116 (4) ◽  
pp. 693-707 ◽  
Author(s):  
P. D. Lawley ◽  
Carolyn J. Thatcher

1. In neutral aqueous solution N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) yields salts of nitrocyanamide as u.v.-absorbing products. With cysteine, as found independently by Schulz & McCalla (1969), the principal product is 2-nitràminothiazoline-4-carboxylic acid. Both these reactions liberate the methylating species; thiols enhance the rate markedly at neutral pH values. An alternative reaction with thiols gives cystine, presumably via the unstable S-nitrosocysteine. 2. Thiols (glutathione or N-acetylcysteine) in vitro at about the concentration found in mammalian cells enhance the rate of methylation of DNA markedly over that in neutral solution. 3. Treatment of cultured mammalian cells with MNNG results in rapid methylation of nucleic acids, the extent being greater the higher the thiol content of the cells. Rodent embryo cells are more extensively methylated than mouse L-cells of the same thiol content. Cellular thiol concentrations are decreased by MNNG. Proteins are less methylated by MNNG than are nucleic acids. 4. Methylation of cells by dimethyl sulphate does not depend on cellular thiol content and protein is not less methylated than nucleic acids. Methylation by MNNG may therefore be thiol-stimulated in cells. 5. Both in vitro and in cells about 7% of the methylation of DNA by MNNG occurs at the 6-oxygen atom of guanine. The major products 7-methylguanine and 3-methyladenine are given by both MNNG and dimethyl sulphate, but dimethyl sulphate does not yield O6-methylguanine. Possible reaction mechanisms to account for this difference between these methylating agents and its possible significance as a determinant of their biological effects are discussed.


2013 ◽  
Vol 79 (19) ◽  
pp. 6110-6116 ◽  
Author(s):  
Zeinab Hosseinidoust ◽  
Theo G. M. van de Ven ◽  
Nathalie Tufenkji

ABSTRACTThe rapid increase in the emergence of antibiotic-resistant bacteria has attracted attention to bacteriophages for treating and preventing bacterial infections. Bacteriophages can drive the diversification ofPseudomonas aeruginosa, giving rise to phage-resistant variants with different phenotypes from their ancestral hosts. In this study, we sought to investigate the effect of phage resistance on cytotoxicity of host populations toward cultured mammalian cells. The library of phage-resistantP. aeruginosaPAO1 variants used was developed previously via experimental evolution of an isogenic host population using phages PP7 and E79. Our results presented herein indicate that the phage-resistant variants developed in a heterogeneous phage environment exhibit a greater ability to impede metabolic action of cultured human keratinocytes and have a greater tendency to cause membrane damage even though they cannot invade the cells in large numbers. They also show a heightened resistance to phagocytosis by model murine macrophages. Furthermore, all isolates produced higher levels of at least one of the secreted virulence factors, namely, total proteases, elastase, phospholipase C, and hemolysins. Reverse transcription-quantitative PCR (RT-qPCR) revealed upregulation in the transcription of a number of genes associated with virulence ofP. aeruginosafor the phage-resistant variants. The results of this study indicate a significant change in thein vitrovirulence ofP. aeruginosafollowing phage predation and highlight the need for caution in the selection and design of phages and phage cocktails for therapeutic use.


2014 ◽  
Vol 59 (3) ◽  
pp. 1620-1626 ◽  
Author(s):  
Osmar N. Silva ◽  
Isabel C. M. Fensterseifer ◽  
Elaine A. Rodrigues ◽  
Hortência H. S. Holanda ◽  
Natasha R. F. Novaes ◽  
...  

ABSTRACTThe rapid increase in the incidence of multidrug-resistant infections today has led to enormous interest in antimicrobial peptides (AMPs) as suitable compounds for developing unusual antibiotics. In this study, clavanin A, an antimicrobial peptide previously isolated from the marine tunicateStyela clava, was selected as a purposeful molecule that could be used in controlling infection and further synthesized. Clavanin A wasin vitroevaluated againstStaphylococcus aureusandEscherichia colias well as toward L929 mouse fibroblasts and skin primary cells (SPCs). Moreover, this peptide was challenged here in anin vivowound and sepsis model, and the immune response was also analyzed. Despite displaying clearin vitroantimicrobial activity toward Gram-positive and -negative bacteria, clavanin A showed no cytotoxic activities against mammalian cells, and in acute toxicity tests, no adverse reaction was observed at any of the concentrations. Moreover, clavanin A significantly reduced theS. aureusCFU in an experimental wound model. This peptide also reduced the mortality of mice infected withE. coliandS. aureusby 80% compared with that of control animals (treated with phosphate-buffered saline [PBS]): these data suggest that clavanin A prevents the start of sepsis and thereby reduces mortality. These data suggest that clavanin A is an AMP that could improve the development of novel peptide-based strategies for the treatment of wound and sepsis infections.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Marcos Mateo-Fernández ◽  
Tania Merinas-Amo ◽  
Miguel Moreno-Millán ◽  
Ángeles Alonso-Moraga ◽  
Sebastián Demyda-Peyrás

The aim of this work was to assess the biological and food safety of two different beverages: Classic Coca Cola™(CCC) and Caffeine-Free Coca Cola (CFCC). To this end, we determined the genotoxicological and biological effects of different doses of lyophilised CCC and CFCC and Caffeine (CAF), the main distinctive constituent. Their toxic/antitoxic, genotoxic/antigenotoxic, and chronic toxicity (lifespan assay) effects were determinedin vivousing theDrosophilamodel. Their cytotoxic activities were determined using the HL-60in vitrocancer model. In addition, clastogenic DNA toxicity was measured using internucleosomal fragmentation and SCGE assays. Their epigenetic effects were assessed on the HL-60 methylation status using some repetitive elements. The experimental results showed a slight chemopreventive effect of the two cola beverages against HL-60 leukaemia cells, probably mediated by nonapoptotic mechanisms. Finally, CCC and CAF induced a global genome hypomethylation evaluated in LINE-1 and Alu M1 repetitive elements. Overall, we demonstrated for the first time the safety of this famous beverage inin vivoandin vitromodels.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Zhaojun Zheng ◽  
Nagendran Tharmalingam ◽  
Qingzhong Liu ◽  
Elamparithi Jayamani ◽  
Wooseong Kim ◽  
...  

ABSTRACT The increasing prevalence of antibiotic resistance has created an urgent need for alternative drugs with new mechanisms of action. Antimicrobial peptides (AMPs) are promising candidates that could address the spread of multidrug-resistant bacteria, either alone or in combination with conventional antibiotics. We studied the antimicrobial efficacy and bactericidal mechanism of cecropin A2, a 36-residue α-helical cationic peptide derived from Aedes aegypti cecropin A, focusing on the common pathogen Pseudomonas aeruginosa. The peptide showed little hemolytic activity and toxicity toward mammalian cells, and the MICs against most clinical P. aeruginosa isolates were 32 to 64 μg/ml, and its MICs versus other Gram-negative bacteria were 2 to 32 μg/ml. Importantly, cecropin A2 demonstrated synergistic activity against P. aeruginosa when combined with tetracycline, reducing the MICs of both agents by 8-fold. The combination was also effective in vivo in the P. aeruginosa/Galleria mellonella model (P < 0.001). We found that cecropin A2 bound to P. aeruginosa lipopolysaccharides, permeabilized the membrane, and interacted with the bacterial genomic DNA, thus facilitating the translocation of tetracycline into the cytoplasm. In summary, the combination of cecropin A2 and tetracycline demonstrated synergistic antibacterial activity against P. aeruginosa in vitro and in vivo, offering an alternative approach for the treatment of P. aeruginosa infections.


2020 ◽  
pp. 12-22
Author(s):  
Natalia Bezdieniezhnykh ◽  
Aleksandra Lykhova ◽  
Hennadii Borschevskyi ◽  
Kateryna Dyakun ◽  
Ievgen Kruglov

Background. Presently, a prospective direction for the development of regenerative medicine in the world is the search for regulatory molecules and the identification of molecular targets to stimulate the body's endogenous regenerative potential. The concentrate of the deproteinized dermal layer of porcine skin (СDDLPS) is a new therapeutic agent with restorative properties, the action of which is directed on the induction of the self resources of cells. Aim. The assessment of the effect of СDDLPS on the proliferative activity of mammalian cells of different histogenesis in vitro. Materials and Methods. To determine the amino acid composition of the СDDLPS liquid chromatography and biochemical methods were used. The biological effects and mechanisms of action of the drug were investigated by cell culture and molecular biological methods. The research was carried out using stable cell lines: human keratinocytes (HaCaT cell line), porcine endothelial cells (PAE cell line), bovine kidney cells (MDBK cell line) and mouse fibroblasts (3T3A31 cell line). Results. The cells of the bovine kidney MDBK cell line were the most sensitive to the effect of the CDDLPS. Also, the obtained results suggest that, depending on the concentration, the drug not only stimulates cell proliferation by 10–30 %, but also significantly enhances biosynthetic processes in cells, in particular, protein synthesis by 20–40 %. Conclusions. CDDLPS is an effective and affordable therapeutic agent with restorative properties, the biological activity of which manifests itself in the activation of cell biosynthetic and proliferative potentials and is comparable to effects of some growth factors, in particular epidermal growth factor


2007 ◽  
Vol 28 (2) ◽  
pp. 705-717 ◽  
Author(s):  
Panagiota Karagianni ◽  
Larbi Amazit ◽  
Jun Qin ◽  
Jiemin Wong

ABSTRACT Methylation of histone H3 on lysine 9 is critical for diverse biological processes including transcriptional repression, heterochromatin formation, and X inactivation. The biological effects of histone methylation are thought to be mediated by effector proteins that recognize and bind to specific patterns of methylation. Using an unbiased in vitro biochemical approach, we have identified ICBP90, a transcription and cell cycle regulator, as a novel methyl K9 H3-specific binding protein. ICBP90 and its murine homologue Np95 are enriched in pericentric heterochromatin of interphase nuclei, and this localization is dependent on H3K9 methylation. Specific binding of ICBP90 to methyl K9 H3 depends on two functional domains, a PHD (plant homeodomain) finger that defines the binding specificity and an SRA (SET- and RING-associated) domain that promotes binding activity. Furthermore, we present evidence that ICBP90 is required for proper heterochromatin formation in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document