scholarly journals Novel Hydroxyapatite Beads for the Adsorption of Radionuclides from Decommissioned Nuclear Power Plant Sites

2021 ◽  
Vol 11 (4) ◽  
pp. 1746
Author(s):  
Thi Nhung Tran ◽  
Junho Kim ◽  
Joo-Sung Park ◽  
Youngkun Chung ◽  
Jaemun Han ◽  
...  

Although a powdered form of hydroxyapatite (p-HdA) has been studied for the adsorption of heavy metals that contaminate the restoration sites of decommissioned nuclear power plants, most of the studies are limited in the laboratory due to the head loss and post-separation in practical applications. Herein, we fabricated a porous bead form of HdA (b-HdA) as a novel adsorbent for removing radionuclides from aqueous environments via a facile synthesis by mixing the p-HdA precursor and polyvinyl butyral (PVB) as a binder and added a sintering process for the final production of a porous structure. The spherical b-HdA with an approximate diameter of 2.0 mm was successfully fabricated. The effectiveness of the b-HdA at removing Co(II) was investigated via the adsorption equilibrium at various experimental temperatures. The b-HdA exhibited the adsorption capacity for Co(II) ions with a maximum of 7.73 and 11.35 mg/g at 293 K and 313 K, respectively. The experimental kinetic data were well described using a pseudo-second-order kinetic model, and the adsorption mechanisms of Co(II) onto the b-HdA were revealed to be a chemisorption process with intraparticle diffusion being the rate-limiting step. In addition, the competitive adsorption onto the b-HdA with the order of U(VI) > Co(II) > Ni(II) > Sr(II) > Cs(I) was also observed in the multi-radionuclides system. Considering the advantages of the size, applicability to the continuous-flow column, and the easy separation from treated water, the b-HdA can be an excellent absorbent with high potential for practical applications for removing radionuclides.

2021 ◽  
Author(s):  
Xiao Liu ◽  
Shaoyang Shi ◽  
Xuefei Hu ◽  
Tao Sun ◽  
Juanxiang Zhang ◽  
...  

Abstract Farming in China’s rural areas leads to antibiotic pollution in waterbodies making it a grave issue. Cotton straw biochar (CSBC) was prepared by oxygen-limited pyrolysis at 400 °C (CSBC400) and 600 °C (CSBC600); and Mn-modified CSBC (MCSBC) was produced by the KMnO4 wrapping method for tetracycline (TC) removal from aqueous solutions. The effects of temperature, initial solution concentration, pH, ion type, and ionic strength on TC adsorption were investigated. The adsorption process of the biochars achieved an equilibrium state after 360 min, and the highest equilibrium adsorption amount (13.254 mg/g) was found for MCSBC. The kinetic adsorption process, which was dominated by chemisorption, was well-described by the pseudo-second-order kinetic model. The adsorption was a non-homogeneous heat absorption process, and the adsorption isotherm data fitting was compatible with the Freundlich model. A better adsorption effect of MCSBC was observed when the pH was < 4. Monovalent cations (Na+, K+, NH4+, and Ca2+) had a facilitative effect on the adsorption process. The adsorption mechanisms of TC by MCSBC included pore diffusion, H bonding, electrostatic interactions, and π–π accumulation. Therefore, MCSBC has a good adsorption capacity for TC and can be used for the treatment of TC-based pollutants in aqueous environments.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1899 ◽  
Author(s):  
Jun ◽  
Kim ◽  
Han ◽  
Yoon ◽  
Kim ◽  
...  

For this study, we applied activated biochar (AB) and its composition with magnetite (AB-Fe3O4) as adsorbents for the removal of polychlorophenols in model wastewater. We comprehensively characterized these adsorbents and performed adsorption tests under several experimental parameters. Using FTIR, we confirmed successful synthesis of AB-Fe3O4 composite through cetrimonium bromide surfactant. We conducted adsorption tests using AB and AB-Fe3O4 to treat model wastewater containing polychlorophenols, such as 2,3,4,6-Tetrachlorophenol (TeCP), 2,4,6-Trichlorophenol (TCP), and 2,4-Dichlorophenol (DCP). Results of the isotherm and the kinetic experiments were well adapted to Freundlich’s isotherm model and the pseudo-second-order kinetic model, respectively. Main adsorption mechanisms in this study were attributed to non-covalent, π-electron acceptor–donor interactions and hydrophobic interactions judging from the number of chloride elements in each chlorophenol and its hydrophobic characteristics. We also considered the electrostatic repulsion effect between TeCP and AB, because adsorption performance of TeCP at basic condition was slightly worse than at weak acidic condition. Lastly, AB-Fe3O4 showed high adsorption selectivity of TeCP compared to other persistent organic pollutants (i.e., bisphenol A and sulfamethoxazole) due to hydrophobic interactions. We concluded that AB-Fe3O4 may be used as novel adsorbent for wastewater treatment including toxic and hydrophobic organic pollutants (e.g., TeCP).


2019 ◽  
Vol 80 (2) ◽  
pp. 300-307
Author(s):  
Di Zhang ◽  
Jiaxin Liu ◽  
Shibei Zhu ◽  
Huixin Xiong ◽  
Yiqun Xu

Abstract The aim of this work is to study the performances of isomeric α-, β-, and γ-FeOOH (goethite, akaganéite and lepidocrocite, including five samples named as Gth1 and Gth2, Aka1 and Aka2, and Lep, respectively) for removing hexavalent chromium (Cr(VI)) from aqueous solutions. The adsorption mechanisms were explored by kinetic and isothermal experiments. Adsorption efficiencies under the different pH values, anions, and the levels of adsorbate and adsorbent were also measured. Results showed that the Cr(VI) adsorption by isomeric FeOOH could be best described by pseudo-second-order kinetic model. The processes of Cr(VI) isothermal adsorption could be greatly fitted by the Langmuir and Freundlich equations with the high correlation coefficients of R2 (&gt;0.92). Also, there were the optimum pH values of 3.0–8.0 for FeOOH to adsorb Cr(VI), and their adsorption capacities were tightly related with the active sites of adsorbents. Cr(VI) adsorptions by these adsorbents were easily influenced by H2PO4–, and then SO42–, while there were little effects by Cl–, CO32– and NO3–. These obtained results could provide a potentially theoretical evidence for isomeric FeOOH materials applied in the engineering treatment of the polluted chromate-rich waters.


2020 ◽  
Vol 69 (7) ◽  
pp. 678-693
Author(s):  
R. Aouay ◽  
S. Jebri ◽  
A. Rebelo ◽  
J. M. F. Ferreira ◽  
I. Khattech

Abstract Hydroxyapatite powders were synthesized according to a wet precipitation route and then subjected to heat treatments within the temperature range of 200–800 °C. The prepared samples were tested as sorbents for cadmium in an aqueous medium. The best performances were obtained with the material treated at 200 °C (HAp200), as the relevant sorbent textural features (SBET – specific surface area and Vp – total volume of pores) were least affected at this low calcination temperature. The maximum adsorption capacity at standard ambient temperature and pressure was 216.6 mg g−1, which increased to 240.7 mg g−1 by increasing the temperature from 25 to 40 °C, suggesting an endothermic nature of the adsorption process. Moreover, these data indicated that a thermal treatment at 200 °C enhanced the ability of the material in Cd2+ uptake by more than 100% compared to other similar studies. The adsorption kinetic process was better described by the pseudo-second-order kinetic model. Langmuir, Freundlich, and Dubinin–Kaganer–Radushkevich isotherms were applied to describe the sorption behaviour of Cd2+ ions onto the best adsorbent. Furthermore, a thermodynamic study was also performed to determine ΔH°, ΔS°, and ΔG° of the sorption process of this adsorbent. The adsorption mechanisms were investigated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy-transmission electron microscopy (SEM-TEM) observations.


1987 ◽  
Vol 67 (2) ◽  
pp. 353-366 ◽  
Author(s):  
J. T. KOCH ◽  
B. D. KAY

Knowledge of the transportability of the long-lived and potentially hazardous nuclide 129I in organic soils is important for evaluating the concept of safely disposing of radioactive fuel waste from Canadian nuclear power plants. The current concept for the disposal of nuclear fuel waste in Canada involves its emplacement in a vault mined 500–1000 m deep in a stable plutonic rock formation in the Canadian Shield. Degradation over time of components of the vault could lead to the entry of 129I to organic soils from contaminated groundwater. Twelve samples from nine organic soils, widely different in degree of humification and in parent vegetation, were collected from the Precambrian Shield of Ontario. Batch reaction techniques were used to measure the kinetics of iodide loss from solution in the presence of the organic soil materials. All soil materials exhibited an initial constant rate of iodide loss from solution (zero-order kinetics). The rate constants for iodide loss for the different soil materials ranged from 1.44 to 36.0 mg iodide per kilogram soil per day. The natural I content for the organic soil samples was positively correlated to the measured rate constant. It is concluded that the rate constant for iodide, as measured in the laboratory, is related to the processes that operate in the field to immobilize I under natural conditions, and that a zero-order kinetic model is appropriate for describing the loss of iodide from the solution phase in an organic soil. Key words: Organic soils, iodide-129, groundwater, transport kinetics, immobilization


2021 ◽  
Author(s):  
Zhiyu Huang ◽  
Peng Wu ◽  
Yankun Yin ◽  
Xiang Zhou ◽  
Lu Fu ◽  
...  

Abstract In order to prepare low-cost and environmentally friendly adsorbent materials for adsorption of heavy metal ion, two kinds of novel modified cottons (C-4-APD and C-2-APZ) were obtained by introducing 4-aminopyridin and 2-aminopyrazine into the surface of degreasing cotton, respectively, and used for the removal of Cr(VI) ions from aqueous solution. The two modified cottons were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), which confirmed the amino groups, pyridine groups and pyrazine groups grafted onto the surface of modified cottons. The maximum adsorption capacities of C-4-APD and C-2-APZ were 73.78 mg/g and 61.34 mg/g, respectively, at the optimum pH of 6 and an initial concentration of 200 mg/g. Kinetic and isotherm studies were carried out to investigate the adsorption behavior of the modified cottons on Cr(VI) ions. The results showed that the adsorption of Cr(VI) ions by modified cottons followed a pseudo-second-order kinetic model, the equilibrium data were in good agreement with the Langmuir isotherm model, and electrostatic and chemisorption may be the main adsorption mechanisms. The recovery and reuse of modified cotton were achieved by washing with 2 wt% thiourea-hydrochloric acid solution (0.5 mol/L concentration of HCl), and the adsorption capacities of C-4-APD and C-2-APZ were maintained above 90% and 80%, respectively, after six cycles.


2018 ◽  
Vol 20 (2) ◽  
pp. 381-388 ◽  

The removal of Lead (II) from aqueous solutions using Fagopyrum esculentum Moench (Buckwheat) and Bambusa vulgaris (common bamboo) as adsorbents was investigated. The effects of various experimental parameters such as initial concentration, contact time and pH have been studied using batch adsorption technique. All the Adsorption isotherm models fitted well with the adsorption data. However, Freundlich isotherm displayed a better fitting model than the other two isotherm models due to high correlation coefficient (R2). This indicates the applicability of multilayer coverage of the Pb (II) on the surface of adsorbent. The adsorption kinetics was studied using four simplified models and it was found to follow the pseudo-second-order kinetic model which confirmed the applicability of the model. The adsorption mechanism was found to be chemisorption and the rate-limiting step was mainly surface adsorption.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 358 ◽  
Author(s):  
Bo Chen ◽  
Shenxu Bao ◽  
Yimin Zhang ◽  
Ruwei Zheng

Trialkylamine (N235)-tributyl phosphate (TBP) impregnated resins (N-TIRs) were prepared, so as to evaluate the effects of the addition of TBP on the preparation and adsorption performance of N235-impregnated resins (NIRs). The results show that TBP can obviously increase the impregnation ratio and shorten the impregnation equilibrium time of the N-TIRs when compared to that of the NIRs (57.73% versus 36.95% and 5 min versus 240 min). It is confirmed that TBP can interact with N235 during the impregnation process, which shorten the adsorption equilibrium time and increases the adsorption capacity of the N-TIRs for V(V) when compared to that of the NIRs (6 h versus 10 h and 50.95 mg·g−1 versus 46.73 mg·g−1). The kinetics fitting results demonstrate that the adsorption of V(V) onto N-TIRs and NIRs all conform to pseudo-second order kinetic model and chemical reaction is the rate-limiting step of the whole adsorption process. In the meanwhile, the reaction constant (Ks) implies that the chemical reaction rate of V(V) with the impregnated extractants in N-TIRs is faster than that in NIRs. The N-TIRs present higher stability and selectivity than NIRs. This study manifests that the addition of a secondary reagent may be a potential and novel technique on the preparation of SIRs and the enhancement of adsorption and separation for ions.


2019 ◽  
Vol 107 (12) ◽  
pp. 1161-1172 ◽  
Author(s):  
Mostafa M. Hamed ◽  
I. M. Ahmed ◽  
M. Holiel

Abstract With the speedy growth of nuclear power production, the removal and disposal of radioactive nuclides such as 129I, 99Tc, 79Se, 36Cl, 93Mo, and 137Cs become major environmental security issues. Retention of these radionuclides, especially anionic species such as 129I (t1/2 1.7 × 107 years), 93Mo (t1/2 4 × 103 years) and 79Se (t1/2 3.27 × 105 years) has been challenging. 129I, 93Mo and 79Se bind very weakly to most sorbents and deposits. This study has examined the sorption potential of Metal hydroxide sludge (MHS) for 125I (t1/2 60.2 days), 99Mo (t1/2 2.75 days) and 75Se (t1/2 120 days) as a surrogate for 129I, 93Mo and 79Se, respectively. MHS has been characterized by different techniques and the factors affecting the sorption processes were investigated. The experimental data were analyzed using kinetic models and thermodynamic parameters. The results showed that the kinetics of sorption of 125I and 99Mo on MHS proceeds according to the pseudo-first-order, on the contrary of 75Se sorption follows pseudo second-order kinetic model. The maximum sorption capacity of MHS was found to be 51.2 mg/g, 46.5 mg/g and 40.2 mg/g for 125I, 99Mo and 75Se, respectively. It can be concluded that, in the case of release of anionic radionuclide species to the surroundings the MHS could act as a succeeded and economical sorbent material for retention of different anionic radionuclides such as 133, 129I, 79Se, 36Cl, 93, 99Mo, and 99Tc. To avoid the release of such anionic species from the stored nuclear wastes to the environment.


Author(s):  
Ruqing Jiang ◽  
Guangwei Yu ◽  
Pamphile Ndagijimana ◽  
Yu Wang ◽  
Futian You ◽  
...  

Abstract Using solid adsorbents, such as biochar, has been a potential practice to remove the pollutants from water bodies to render the water safer for potential usage. A potential application of sludge biochar-based adsorbent (SBA) obtained by pyrolysis with hydrothermal treatment was developed to adsorb Direct Red 23 (DR23) from wastewater. The results showed that the synthesized SBA (0.5 g/L) in the adsorption of DR23 at low concentration (&lt;20 mg/L), the DR23 were totally removed from the aqueous solution. PH had a limited effect on the adsorption, while an increase in temperature was shown to have a large enhancing effect. The adsorption kinetics were the best fit by the pseudo-second-order kinetic model, while the equilibrium data were best fitted by the Langmuir isotherm. A maximum saturation adsorption capacity of SBA of 111.98 mg/g was achieved. SBA could then be regenerated by pyrolysis, and after three cycles, SBA still retained the good adsorption ability of DR23, a removal rate exceeding 97% was achieved. Functional groups, pores, π-π bond, and electrostatic interactions are the key to the adsorption mechanisms. The results proved that SBA would be a promising material in the removal application of dyes in printing and dyeing wastewater.


Sign in / Sign up

Export Citation Format

Share Document