scholarly journals Three-Dimensional Modeling and 3D Printing of Biocompatible Orthodontic Power-Arm Design with Clinical Application

2021 ◽  
Vol 11 (20) ◽  
pp. 9693
Author(s):  
Andrej Thurzo ◽  
Filip Kočiš ◽  
Bohuslav Novák ◽  
Ladislav Czako ◽  
Ivan Varga

Three-dimensional (3D) printing with biocompatible resins offers new competition to its opposition—subtractive manufacturing, which currently dominates in dentistry. Removing dental material layer-by-layer with lathes, mills or grinders faces its limits when it comes to the fabrication of detailed complex structures. The aim of this original research was to design, materialize and clinically evaluate a functional and resilient shape of the orthodontic power-arm by means of biocompatible 3D printing. To improve power-arm resiliency, we have employed finite element modelling and analyzed stress distribution to improve the original design of the power-arm. After 3D printing, we have also evaluated both designs clinically. This multidisciplinary approach is described in this paper as a feasible workflow that might inspire application other individualized biomechanical appliances in orthodontics. The design is a biocompatible power-arm, a miniature device bonded to a tooth surface, translating significant bio-mechanical force vectors to move a tooth in the bone. Its design must be also resilient and fully individualized to patient oral anatomy. Clinical evaluation of the debonding rate in 50 randomized clinical applications for each power-arm-variant showed significantly less debonding incidents in the improved power-arm design (two failures = 4%) than in the original variant (nine failures = 18%).

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Amy E. Alexander ◽  
Nicole Wake ◽  
Leonid Chepelev ◽  
Philipp Brantner ◽  
Justin Ryan ◽  
...  

AbstractFirst patented in 1986, three-dimensional (3D) printing, also known as additive manufacturing or rapid prototyping, now encompasses a variety of distinct technology types where material is deposited, joined, or solidified layer by layer to create a physical object from a digital file. As 3D printing technologies continue to evolve, and as more manuscripts describing these technologies are published in the medical literature, it is imperative that standardized terminology for 3D printing is utilized. The purpose of this manuscript is to provide recommendations for standardized lexicons for 3D printing technologies described in the medical literature. For all 3D printing methods, standard general ISO/ASTM terms for 3D printing should be utilized. Additional, non-standard terms should be included to facilitate communication and reproducibility when the ISO/ASTM terms are insufficient in describing expository details. By aligning to these guidelines, the use of uniform terms for 3D printing and the associated technologies will lead to improved clarity and reproducibility of published work which will ultimately increase the impact of publications, facilitate quality improvement, and promote the dissemination and adoption of 3D printing in the medical community.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 866
Author(s):  
A. R. Damanpack ◽  
André Sousa ◽  
M. Bodaghi

This paper shows how fused decomposition modeling (FDM), as a three-dimensional (3D) printing technology, can engineer lightweight porous foams with controllable density. The tactic is based on the 3D printing of Poly Lactic Acid filaments with a chemical blowing agent, as well as experiments to explore how FDM parameters can control material density. Foam porosity is investigated in terms of fabrication parameters such as printing temperature and flow rate, which affect the size of bubbles produced during the layer-by-layer fabrication process. It is experimentally shown that printing temperature and flow rate have significant effects on the bubbles’ size, micro-scale material connections, stiffness and strength. An analytical equation is introduced to accurately simulate the experimental results on flow rate, density, and mechanical properties in terms of printing temperature. Due to the absence of a similar concept, mathematical model and results in the specialized literature, this paper is likely to advance the state-of-the-art lightweight foams with controllable porosity and density fabricated by FDM 3D printing technology.


2015 ◽  
Vol 6 (2) ◽  
pp. 63-86
Author(s):  
Dipesh Dhital ◽  
Yvonne Ziegler

Additive Manufacturing also known as 3D Printing is a process whereby a real object of virtually any shape can be created layer by layer from a Computer Aided Design (CAD) model. As opposed to the conventional Subtractive Manufacturing that uses cutting, drilling, milling, welding etc., 3D printing is a free-form fabrication process and does not require any of these processes. The 3D printed parts are lighter, require short lead times, less material and reduce environmental footprint of the manufacturing process; and is thus beneficial to the aerospace industry that pursues improvement in aircraft efficiency, fuel saving and reduction in air pollution. Additionally, 3D printing technology allows for creating geometries that would be impossible to make using moulds and the Subtractive Manufacturing of drilling/milling. 3D printing technology also has the potential to re-localize manufacturing as it allows for the production of products at the particular location, as and when required; and eliminates the need for shipping and warehousing of final products.


Author(s):  
Jorge A. Vergen ◽  
Tinen L. Iles ◽  
Paul A. Iaizzo

Abstract Mimetic three-dimensional (3D) printing has been shown to enhance presurgical planning and improve patient outcomes. However, data inconsistencies and non-optimized soft tissue data management strategies have impaired efforts to characterize soft tissues and translate biophysical values to 3D printing media durometers and shore values. As a result, finished models are inconsistent and exhibit reduced mimetic qualities. Improving biophysical characterizations of soft tissues, analysis strategies, and consolidation infrastructures are important factors that will improve 3D modeling in a presurgical planning setting. In our ongoing associated studies, both physiologically viable and formalin fixed large mammalian tissues (including human) were assessed using uniaxial and biaxial testing strategies. Biophysical datasets were analyzed using a gated analysis strategy, tailored to data acquisition methods developed within the University of Minnesota Visible Heart® Labs (VHL). A SQL database was then constructed to consolidate analyzed data for future retrieval. This strong preliminary data is a foundation for further development and refinement of future studies. It is our long-term goal that these strategies be improved and adopted to enhance the mimetic qualities of 3D presurgical planning models.


Author(s):  
James F. Kerestes

3D printing is a common resource within the architecture and design disciplines in higher education. As is the case with all tools, there is a predetermined functionality and expected outcome when using additive manufacturing technology. There are also learning opportunities rooted in unforeseen equipment errors. The following chapter outlines alternate approaches for the use of 3D printing beyond mere representation and utilization in higher education design environments. Manufactured glitches enable students to analyze the predetermined functionality of the tools they engage with, and enter into a dialogue with technology as a medium for exploration and authorial exchange. To explore these concepts, a series of case studies that tested the parameters of glitches in both digital (three-dimensional modeling software) and physical mediums (rapid prototyping) was completed by a group of architecture and design students at a Midwestern University in the United States.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Sara Coppola ◽  
Giuseppe Nasti ◽  
Veronica Vespini ◽  
Pietro Ferraro

Nowadays it is easy to imagine that the exploitation of different additive manufacturing approaches could find use in regenerative medicine and frontiers nanotechnology with a strong interest in the development of in vivo bio-incubators that better replicate the tissue environment. Various electrospinning technologies have been exploited for the fabrication of composite polymeric architectures, where fibers have been used for the construction layer by layer of micro-architectures. Unfortunately, in case of processing biomaterials, the intrinsic factors of the materials could become obstacles when considering such advanced engineering methods. Here, for the first time, we use the pyro-EHD process for the fabrication of layered three-dimensional architectures made using a biodegradable and biocompatible polymer. The proposed approach for layered 3D printing works at mild temperature allowing deposition at high resolution and great flexibility in manufacturing, avoiding high voltage generators, and nozzles. The layered 3D printing, activated by the pyro-electric effect, is discussed and characterized in terms of geometrical features and processing parameters. Different geometries and micro-architecture (wall, square, triangle, and hybrid structures) have been demonstrated and over printing of composite polymer, obtained by mixing multiwall carbon nanotubes and fluorochrome, has been discussed, focusing on the use of a biodegradable and biocompatible polymer.


2014 ◽  
Vol 915-916 ◽  
pp. 236-239
Author(s):  
Man Yang ◽  
Hui Bin Li ◽  
Bao Yun Xu

For hypoid gear which processed by HFT (hypoid gear formate tilt) method, geometry parameters and machining parameters of hypoid gear were calculated by using Gleason card. According to the actual machining process and meshing principle, tooth surface equation was derived by coordinate transformation. Then the discrete coordinates points of tooth surface were obtained by using MATLAB tools and projection transformation principle, and data were saved in ibl format. At last the 3-demensional model of hypoid gear were established by importing the ibl format data in Pro/e.


2005 ◽  
Vol 492-493 ◽  
pp. 679-684 ◽  
Author(s):  
Dirk Godlinski ◽  
Stéphane Morvan

It is difficult to generate any user-defined three dimensional gradient to tailor the functional properties of a component. Problems are not only the lack of local material design tools, but also a suitable manufacturing process. The implementation of the concept of local composition control into the Solid Freeform Fabrication (SFF) process 3D-Printing is described, which leads to geometrical complex parts out of tailored materials. Suspensions of different functional inks containing a binder and carbon black nano-particles are dispensed into droplets through multiple jets – like inkjet printing a halftone image on a paper – but into a metal powder bed to generate layer by layer graded green parts. In this case the tailored preforms are then sintered, while the nano-particle additions from the functional ink act locally as alloying elements in the steel matrix to combine e.g. both, toughness and hardness in the part. This work concentrates on the realisation of the new process and shows first results taking the generation of carbon-graded steel parts as an example.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Milan Šljivić ◽  
Dragoljub Mirjanić ◽  
Nataša Šljivić ◽  
Cristiano Fragassa ◽  
Ana Pavlović

The Additive manufacturing 3D printing is a process of creating a three dimensional solid objects or rapid prototyping of 3D models from a digital file, which builds layer by layer. The 3D bioprinting is a form sophisticated of 3D printing technology involving cells and tissues for the production of tissue for regenerative medicine, which is also built layer by layer into the area of human tissue or organ. This paper defines the modern methods and materials of the AM, which are used for the development of physical models and individually adjusted implants for 3D printing for medical purposes. The main classification of 3D printing and 3D bioprinting technologies are also defined by typical materials and a field of application. It is proven that 3D printing and 3D bioprinting techniques have a huge potential and a possibility to revolutionize the field of medicine.


Sign in / Sign up

Export Citation Format

Share Document