scholarly journals Spectral Characteristics of the Double-Folded Slot Antennas with Cold-Electron Bolometers for the 220/240 GHz Channels of the LSPE Instrument

2021 ◽  
Vol 11 (22) ◽  
pp. 10746
Author(s):  
Leonid S. Revin ◽  
Dmitry A. Pimanov ◽  
Anton V. Blagodatkin ◽  
Anna V. Gordeeva ◽  
Andrey L. Pankratov ◽  
...  

We present the results of the experimental and theoretical study of the resonant properties and noise of a single cell of a receiving system based on cold-electron bolometers (CEB) with a double-folded slot antenna and coplanar lines. The system was designed to receive signals at 220/240 GHz frequencies with a 5% bandwidth. In measurements, we used the samples of the double-folded slot antennas with slot lengths of 162 um and coplanar line lengths from 185 to 360 um. Measurements of the resonance properties of CEB located at 0.3 K cryostat plate were carried out using a generator based on a high-temperature YBCO Josephson junction located inside the same cryostat at 4 K plate. This arrangement made it possible to obtain smooth amplitude-frequency characteristics with a clearly defined peak of a 15–21 GHz bandwidth at different frequencies. Based on these results, 2-D array of double-folded slot antennas with CEBs as 220/240 GHz LSPE channel prototype was calculated.The absorption efficiency of the array has reached 81% and 77% for 220 and 240 GHz channels, respectively.

Author(s):  
Mengyan Shi ◽  
Jiayao Ma ◽  
Yan Chen ◽  
Zhong You

Thin-walled tubes as energy absorption devices are widely in use for their low cost and high manufacturability. Employing origami technique on a tube enables induction of a predetermined failure mode so as to improve its energy absorption efficiency. Here we study the energy absorption of a hexagonal tubular device named the origami crash box numerically and theoretically. Numerical simulations of the quasi-static axial crushing show that the pattern triggers a diamond-shaped mode, leading to a substantial increase in energy absorption and reduction in initial peak force. The effects of geometric parameters on the performance of the origami crash box are also investigated through a parametric study. Furthermore, a theoretical study on the deformation mode and energy absorption of the origami crash box is carried out, and a good match with numerical results is obtained. The origami crash box shows great promise in the design of energy absorption devices.


2014 ◽  
Vol 151 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Bin Xu ◽  
Bin Tian ◽  
Mei-zhe Lv ◽  
Xiao-hong Fan ◽  
Xiao-fei Guo ◽  
...  

2016 ◽  
Vol 120 (40) ◽  
pp. 10547-10552 ◽  
Author(s):  
Fereshteh Samiee ◽  
Federico N. Pedron ◽  
Dario A. Estrin ◽  
Liliana Trevani

Author(s):  
Kok Yeow You

In this chapter, the background, analytical formulations, and calibration routines for slot antennas are briefly reviewed. Performance and operating frequency of the slot antenna are strongly dependent on the dimension and shape of the slot or slotted array on the antenna. Nowadays, most antennas are designed using numerical simulation software for accuracy in analysis. However, analytical formulations still play an important role in the pre-design of the antenna due to the numerical simulation which still requires relatively long period of computation time compared to the analytical calculation. The predicted dimension of the antenna from analytical calculations will only require minor adjustment to optimize its performance in numerical simulation. Hence, the time spent for the antenna design can be shortened. Besides the performance of antenna, the antenna calibration process is crucial as well for releasing systematic errors in the antenna measurements. Some one-port calibration methods are described in detail.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 347 ◽  
Author(s):  
Ke Li ◽  
Tao Dong ◽  
Zhenghuan Xia

This paper presents a multiple-resonance technique that sought to achieve a wide bandwidth for printed wide-slot antennas with fork-shaped stubs. By properly appending an extra fork-shaped stub onto the main fork-shaped stub, the impedance bandwidth was able to be clearly broadened. To validate this technique, two designs where the extra stubs were added at different positions of the main stub were constructed. The measured impedance bandwidths of the proposed antennas reached 148.6% (0.9–6.1 GHz) for S11 < −10 dB, indicating a 17.9% wider bandwidth than that of the normal antenna (0.9–4.3 GHz). Moreover, a stable radiation pattern was observed within the operating frequency range. The proposed antennas were confirmed to be much-improved candidates for applications in various wireless communication systems.


2019 ◽  
Vol 6 (9) ◽  
pp. 096312
Author(s):  
Junnan Zhang ◽  
Xuening Rong ◽  
Chang Xu ◽  
Aming Xie ◽  
Shuxin Deng

2005 ◽  
Vol 19 (01n03) ◽  
pp. 427-429
Author(s):  
Y. P. ZHANG ◽  
Y. ZHAO

As the information technology grows up and its application penetrates into every area of this world, how to faster and more efficiently transport people and goods is becoming the new social demand, which indicates a new revolution on advanced transportation technology being brewed. High-temperature Superconductivity Maglev (HTSM) is one with the best development potential among most transportation technologies. It could be used in many advanced transportation fields, overcoming the key contradiction and shortcoming of the current transportation patterns such as train, automobile and airplane. On the other hand, HTSM will promote theoretical study and technology exploitation on superconductivity. HTSM's applications in a large scale will bring up profound effect on the forming and development of the superconductivity industry.


2013 ◽  
Vol 1 (7) ◽  
pp. 1368 ◽  
Author(s):  
Rémi Longtin ◽  
Hans-Rudolf Elsener ◽  
Juan Ramon Sanchez-Valencia ◽  
Dominique Cloetta ◽  
Lars-Ola Nilsson ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document