scholarly journals What Do We Know about the Use of EEG Monitoring during Equine Anesthesia: A Review

2019 ◽  
Vol 9 (18) ◽  
pp. 3678
Author(s):  
Olga Drewnowska ◽  
Barbara Lisowska ◽  
Bernard Turek

Electroencephalography is a noninvasive method used for the measurement of central nervous system bioelectrical activity. Besides its use for neurological disorders diagnostics in humans and animals, it was found to be useful as a part of the anesthetic monitoring. Introducing the electroencephalography (EEG) measurement intraoperatively in humans and in animals, due to its high specificity and sensitivity (limited number of wave patterns and high number of variabilities influencing them), with comparison to cardiovascular parameters might significantly increase the quality of anesthesia. The use of EEG during equine anesthesia may help to maintain a proper depth of anesthesia in this species. Due to the fact that EEG analyzers were designed for humans, there are still limitations of their use in horses, and different methods of analysis are studied. The paper introduces the physiology of EEG, its use in animals during anesthesia, and specification for horses.

2008 ◽  
Vol 51 (6) ◽  
pp. 1127-1137 ◽  
Author(s):  
João Carlos Minozzo ◽  
Juliana de Moura ◽  
Sérgio Monteiro Almeida ◽  
Vanete Thomaz-Soccol

Neurocysticercosis (NCC), the cerebral presence of Taenia solium metacestode (Cysticercus cellulosae), is responsible for neurological disorders worldwide. In order to validate an immunodiagnosis for public-health patients in the State of Parana-Brazil, crude antigen of Taenia crassicepsmetacestode (Cysticercus longicollis) was used as an alternative heterologous antigen to be used in ELISA and in electroimmunotransfer blotting (EITB) for active and inactive NCC diagnosis. Indirect ELISA was able to discriminate between active and inactive samples and presented high specificity and sensitivity. Any immunodominant band was able to distinguish the NCC stages, although the EITB showed 100% specificity. The immunological results proved to be an important auxiliary toll for NCC diagnosis, mainly for public-health systems in developing countries, where either the neuroimage techniques are not accessible or the resources are scarce.


Author(s):  
Jin Wang ◽  
Xing Shen ◽  
Peng Zhong ◽  
Zhaodong Li ◽  
Qiushi Tang ◽  
...  

Abstract Background The high quality of antibody (Ab) is critical for an immunoassay; usually, an Ab with low affinity is often regarded as a “bad” one in the immunoassay development. How to use a “bad” Ab to develop a highly sensitive immunoassay is still a huge challenge. Methods In this study, a heterologous immunoassay strategy was designed to enhance the sensitivity for the detection of banned dye, rhodamine B (RB), in fraudulent food. The RB Ab could not recognize RB by pairing with homologous coating antigen (Ag). However, the Ab showed unexpected high specificity and sensitivity recognition after being replaced by heterologous coating Ag. Indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed based on the heterologous strategy. Results The detection limit of icELISA for chilli powder, Chinese prickly ash, hot-pot seasoning, and chilli sauce was 0.002 μg/kg, and the recoveries of the four samples ranged from 76.0 to 102.0%, with the coefficient of variation between 3.9 and 18.8%. Parallel experiment for 20 market samples with high-performance liquid chromatography (HPLC) was performed on to confirm the performance of the practical application of the developed icELISA, and the results of the two methods had good correlation. Molecular modeling inferred that the carboxyl group of hapten and its exposure level played an important role in the hapten-Ab recognition. Conclusions The proposed icELISA can be used for the surveillance screening of RB in a range of seasoning foods, and the heterologous strategy is an effective approach to enhance the sensitivity in an immunoassay.


Cephalalgia ◽  
2010 ◽  
Vol 31 (5) ◽  
pp. 597-602 ◽  
Author(s):  
V Raieli ◽  
A Compagno ◽  
F Brighina ◽  
G La Franca ◽  
D Puma ◽  
...  

Background: Previous studies have suggested a relationship between ‘red ear syndrome’ (RES) and pediatric migraine. Aims of this study were (i) to assess the frequency, specificity and sensitivity of RES in a population of pediatric migraineurs and (ii) to establish the pathophysiological mechanisms of RES associated with migraine. Methods and results: A total of 226 children suffering from headache (aged 4–17 years) were enrolled. One hundred and seventy-two (76.4%) were affected by migraine, the remaining 54 (23.6%) by other primary headaches. RES was followed significantly more frequently by migraine (23.3%; p < .0001), and was characterized by high specificity and positive predictive value (96.3 and 95.3%, respectively). According to the univariate statistical analysis, RES showed a statistically significant association with male gender, throbbing quality of the pain, vomiting and phonophobia. It was confirmed by a multivariate stepwise logistic regression model only for the throbbing quality of the pain, vomiting and male gender. Conclusions: Our study showed that (i) in children, RES is a highly specific sign for migraine. In addition, the evidence of an association of RES with some migraine features partially provoked by the parasympathetic system supports the hypothesis of a shared pathophysiological background (e.g. via the activation of the trigeminal-autonomic reflex).


2020 ◽  
Vol 31 (2) ◽  
pp. 62-68
Author(s):  
Sara E. Holm ◽  
Alexander Schmidt ◽  
Christoph J. Ploner

Abstract. Some people, although they are perfectly healthy and happy, cannot enjoy music. These individuals have musical anhedonia, a condition which can be congenital or may occur after focal brain damage. To date, only a few cases of acquired musical anhedonia have been reported in the literature with lesions of the temporo-parietal cortex being particularly important. Even less literature exists on congenital musical anhedonia, in which impaired connectivity of temporal brain regions with the Nucleus accumbens is implicated. Nonetheless, there is no precise information on the prevalence, causes or exact localization of both congenital and acquired musical anhedonia. However, the frequent involvement of temporo-parietal brain regions in neurological disorders such as stroke suggest the possibility of a high prevalence of this disorder, which leads to a considerable reduction in the quality of life.


2020 ◽  
Vol 21 ◽  
Author(s):  
Aashish Sharma ◽  
Romila Manchanda ◽  
Faheem Hyder Pottoo ◽  
Ghulam Md. Ashraf

: Impressive research steps have been taken for the treatment of neurological disorders in the last few decades. Still effective treatments of brain related disorders are very less due to problems associated with crossing the blood brain barrier (BBB), non-specific therapies, and delay in functional recovery of central nervous system (CNS) after treatment. Striving for novel treatment options for neurological disorders, nanotechnology-derived materials, and devices have gained the ground due to inherent features of derivatization/encapsulation with drugs as per the neurological ailments and pharmacological targets. Facile developments/syntheses of the nanomaterials-drug conjugates have also been the driving force for researchers to get into this field. Moreover, the tunable size and hydro/lipophilicity of these nanomaterials are the added advantages that make these materials more acceptable for CNS disorders. These nano-neurotherapeutics (NNTs) systems provide the platform for diagnosis, theranostics, treatments, restoration of CNS disorders, and encourage the translation of NNTs from “bench to bedside”. Still, these techniques are in primary stages of medical development. This review describes the latest advancements and future scenarios of developmental and clinical aspects of polymeric NNTs.


2020 ◽  
Vol 20 (10) ◽  
pp. 831-840
Author(s):  
Weibin Li

Sepsis is still a severe health problem worldwide with high morbidity and mortality. Blood bacterial culture remains the gold standard for the detection of pathogenic bacteria in bloodstream infections, but it is time-consuming, and both the sophisticated equipment and well-trained personnel are required. Immunoassays and genetic diagnosis are expensive and limited to specificity and sensitivity. Aptamers are single-stranded deoxyribonucleic acid (ssDNA) and ribonucleic acid (RNA) oligonucleotide or peptide sequence generated in vitro based on the binding affinity of aptamer-target by a process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX). By taking several advantages over monoclonal antibodies and other conventional small-molecule therapeutics, such as high specificity and affinity, negligible batch-to-batch variation, flexible modification and production, thermal stability, low immunogenicity and lack of toxicity, aptamers are presently becoming promising novel diagnostic and therapeutic agents. This review describes the prospective application of aptamerbased laboratory diagnostic assays and therapeutics for pathogenic bacteria and toxins in bloodstream infections.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii438-iii438
Author(s):  
Kathleen Dorris ◽  
Jessica Channell ◽  
Ashley Mettetal ◽  
Molly Hemenway ◽  
Natalie Briones ◽  
...  

Abstract BACKGROUND Cannabinoids, including cannabidiol (CBD) and tetrahydrocannabinol (THC), are a class of compounds found in marijuana. Numerous studies in adults have examined cannabinoid use in management of cancer-related symptoms such as nausea, anorexia, and pain. Less is known about the use in the pediatric oncology population. METHODS A prospective observational study has been ongoing since 2016 at Children’s Hospital Colorado to evaluate cannabinoids’ impact using PedsQL™ modules on quality of life of pediatric patients with central nervous system (CNS) tumors who are 2–18 years old. Laboratory assessments of T-cell activity and pharmacokinetics of CBD, THC and associated metabolites are in process. Diaries with exploratory information on cannabinoid use patterns are being collected. RESULTS Thirty-three patients (14:19; male:female) have been enrolled with a median age of 6.4 years (range, 2.9–17.7 years). The most common tumor type in enrolled patients is embryonal tumors (13/33; 39%). Nine (27%) patients have low-grade glial/glioneuronal tumors, and eight (24%) had high-grade/diffuse midline gliomas. The remaining patients had ependymoma or craniopharyngioma. The median time on cannabinoids is 9 months. Most (n=20) patients have used oral products with CBD and THC. One patient continues on cannabinoid therapy in follow up. Preliminary immune function analyses identified impaired neutrophil superoxide anion production and chemotaxis in patients taking cannabinoids at early time points on therapy. CONCLUSIONS Families of children with various CNS tumors are pursuing cannabinoid therapy for both antitumor and supportive care purposes. Analysis of the impact of cannabinoids on patients’ quality of life is ongoing.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mikail Dogan ◽  
Lina Kozhaya ◽  
Lindsey Placek ◽  
Courtney Gunter ◽  
Mesut Yigit ◽  
...  

AbstractDevelopment of antibody protection during SARS-CoV-2 infection is a pressing question for public health and for vaccine development. We developed highly sensitive SARS-CoV-2-specific antibody and neutralization assays. SARS-CoV-2 Spike protein or Nucleocapsid protein specific IgG antibodies at titers more than 1:100,000 were detectable in all PCR+ subjects (n = 115) and were absent in the negative controls. Other isotype antibodies (IgA, IgG1-4) were also detected. SARS-CoV-2 neutralization was determined in COVID-19 and convalescent plasma at up to 10,000-fold dilution, using Spike protein pseudotyped lentiviruses, which were also blocked by neutralizing antibodies (NAbs). Hospitalized patients had up to 3000-fold higher antibody and neutralization titers compared to outpatients or convalescent plasma donors. Interestingly, some COVID-19 patients also possessed NAbs against SARS-CoV Spike protein pseudovirus. Together these results demonstrate the high specificity and sensitivity of our assays, which may impact understanding the quality or duration of the antibody response during COVID-19 and in determining the effectiveness of potential vaccines.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1351
Author(s):  
Mengshu Wang ◽  
Xufei Luo ◽  
Ling Wang ◽  
Janne Estill ◽  
Meng Lv ◽  
...  

Background Lung ultrasound (LUS) and computed tomography (CT) can both be used for diagnosis of interstitial pneumonia caused by coronavirus disease 2019 (COVID-19), but the agreement between LUS and CT is unknown. Purpose to compare the agreement of LUS and CT in the diagnosis of interstitial pneumonia caused by COVID-19. Materials and Methods We searched PubMed, Cochrane library, Embase, Chinese Biomedicine Literature, and WHO COVID-19 databases to identify studies that compared LUS with CT in the diagnosis of interstitial pneumonia caused by COVID-19. We calculated the pooled overall, positive and negative percent agreements, diagnostic odds ratio (DOR) and the area under the standard receiver operating curve (SROC) for LUS in the diagnosis of COVID-19 compared with CT. Results We identified 1896 records, of which nine studies involving 531 patients were finally included. The pooled overall, positive and negative percentage agreements of LUS for the diagnosis of interstitial pneumonia caused by COVID-19 compared with CT were 81% (95% confidence interval [CI] 43–99%), 96% (95% CI, 80–99%, I2 = 92.15%) and 80% (95%CI, 60–92%, I2 = 92.85%), respectively. DOR was 37.41 (95% CI, 9.43–148.49, I2 = 63.9%), and the area under the SROC curve was 0.94 (95% CI, 0.92–0.96). The quality of evidence for both specificity and sensitivity was low because of heterogeneity and risk of bias. Conclusion The level of diagnostic agreement between LUS and CT in the diagnosis of interstitial pneumonia caused by COVID-19 is high. LUS can be therefore considered as an equally accurate alternative for CT in situations where molecular tests are not available.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1207
Author(s):  
Hong Jae Cheon ◽  
Quynh Huong Nguyen ◽  
Moon Il Kim

Inspired by the active site structure of natural horseradish peroxidase having iron as a pivotal element with coordinated histidine residues, we have developed histidine coated magnetic nanoparticles (His@MNPs) with relatively uniform and small sizes (less than 10 nm) through one-pot heat treatment. In comparison to pristine MNPs and other amino acid coated MNPs, His@MNPs exhibited a considerably enhanced peroxidase-imitating activity, approaching 10-fold higher in catalytic reactions. With the high activity, His@MNPs then were exploited to detect the important neurotransmitter acetylcholine. By coupling choline oxidase and acetylcholine esterase with His@MNPs as peroxidase mimics, target choline and acetylcholine were successfully detected via fluorescent mode with high specificity and sensitivity with the limits of detection down to 200 and 100 nM, respectively. The diagnostic capability of the method is demonstrated by analyzing acetylcholine in human blood serum. This study thus demonstrates the potential of utilizing His@MNPs as peroxidase-mimicking nanozymes for detecting important biological and clinical targets with high sensitivity and reliability.


Sign in / Sign up

Export Citation Format

Share Document