scholarly journals Platinum Derivatives Effects on Anticancer Immune Response

Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 13 ◽  
Author(s):  
Cédric Rébé ◽  
Lucie Demontoux ◽  
Thomas Pilot ◽  
François Ghiringhelli

Along with surgery and radiotherapy, chemotherapeutic agents belong to the therapeutic arsenal in cancer treatment. In addition to their direct cytotoxic effects, these agents also impact the host immune system, which might enhance or counteract their antitumor activity. The platinum derivative compounds family, mainly composed of carboplatin, cisplatin and oxaliplatin, belongs to the chemotherapeutical arsenal used in numerous cancer types. Here, we will focus on the effects of these molecules on antitumor immune response. These compounds can induce or not immunogenic cell death (ICD), and some strategies have been found to induce or further enhance it. They also regulate immune cells’ fate. Platinum derivatives can lead to their activation. Additionally, they can also dampen immune cells by selective killing or inhibiting their activity, particularly by modulating immune checkpoints’ expression.

2021 ◽  
Author(s):  
◽  
Carolin Wachtel

Cancer is the major cause of death besides cardiovascular disease. Leukaemia represents the most prevalent malignancy in children with a frequency of 30 % and is one of the ten leading types of cancer in adults. Philadelphia Chromosome-positive B-ALL (Ph+ B-ALL) is driven by the cytogenetic aberration of the reciprocal chromosomal translocation t(9;22)(q34;q11) leading to the formation of the Philadelphia chromosome with a BCR-ABL1 fusion gene. This fusion gene encodes a BCR-ABL1 oncoprotein which is characterized by a constitutively enhanced tyrosine kinase activity promoting amplified proliferation, differentiation arrest and resistance to cell death. Ph+ B-ALL is considered the most aggressive ALL subtype with a long-term survival rate in the range of only 30 % despite intensive standard of care including chemotherapy in combination with a tyrosine kinase inhibitor (TKI) followed by allogeneic stem cell transplantation after remission for clinically fit patients. The efficacy of chemotherapy has long been mainly attributed to tumour cell toxicity while immune modulating effects have been overlooked, especially in light of known immunosuppressive properties. Accumulative evidence, however, emphasizes the ability of chemotherapeutic agents, including TKIs, to normalise or re-educate a dysfunctional tumour microenvironment (TME) resulting in enhanced anti-tumour immunity. One of the underlying mechanisms of immune modulation is the induction of immunogenic cell death (ICD). ICD is an anti-tumour agent-induced cell death modality determined by the capacity to convert cancer cells into anti-cancer vaccines. The induction of ICD relies on the release of damage-associated molecular patterns (DAMPs) from dying tumour cells succumbing to ICD. Translocation of CALR to the cell surface, extracellular secretion of ATP and release of HMGB1 from the nucleus are key hallmarks of ICD that mediate anti-tumour immunity upon binding to antigen presenting cells resulting in a tumour antigen-specific immune response. Besides these molecular determinants, ICD is functionally defined by the inhibition of tumour growth in a vaccination assay in which mice are injected with tumour cells exposed to the potential ICD inducer in-vitro and then re-challenged with live tumour cells of the same cancer type. Both molecular and functional criteria determine the gold standard approach to assess ICD. By increasing the immunogenicity of cancer cells, ICD contributes to the restoration of immunosurveillance as an essential feature of tumour rejection, which is clinically reflected by improved therapeutic efficacy and disease outcome in patients. Therefore, identifying novel ICD inducers is an objective of interest in the context of cancer therapy. In respect of these considerations, the aim addressed in the present work is the examination of the second-generation TKI Nilotinib for the ability to induce ICD. The thesis is set in the context of the group's research on the role of Gas6/TAM signalling within the TME regarding the pathogenesis of acute leukaemia. In in-vivo experiments of our research group it has been consistently observed that the use of Nilotinib enhances the anti-leukaemic immunity mediated by a deletion of Gas6. Against the background of increasing importance of chemotherapeutic agents as potent modulators of a dysregulated TME, it was hypothesized that Nilotinib may synergize with a Gas6-deficient environment by inducing ICD in Ph+ B-ALL cells. In growth inhibition and Annexin V/Propidium iodide cell death assays Nilotinib was shown to induce cell death in concentration-dependent manner that occurs bimodally in terms of cell death modality ranging between apoptosis and necrosis. By ICD marker analysis, comprising flow-cytometric detection of CALR exposure, chemoluminescence-based ATP measurement and immunoblotting for HMGB1, it was found that Nilotinib-induced cell death is not accompanied by CALR exposure and ATP secretion, but is associated with the release of HMGB1. In macrophages co-culture experiments with Nilotinib-treated leukaemic cells, no relevant shift in terms of macrophages activation and polarisation was observed in either a juxtacrine or paracrine setup. In consistency with the results obtained in the in-vitro experiments, Nilotinib was not potent to elicit a protective immune response in mice within a vaccination assay. Conclusively, Nilotinib was identified to not qualify as bona fide ICD inducer. The role of Nilotinib-induced cell death and HMGB1 release are proposed as objective for further investigation concerning the synergistic interplay between Nilotinib and a Gas6-deficient environment. Efforts addressing exploration and optimisation of the immunological potential of chemotherapeutic agents are a promising approach aimed at providing cancer patients with the best possible treatment in future.


2020 ◽  
Vol 8 (1) ◽  
pp. e000337 ◽  
Author(s):  
Lorenzo Galluzzi ◽  
Ilio Vitale ◽  
Sarah Warren ◽  
Sandy Adjemian ◽  
Patrizia Agostinis ◽  
...  

Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.


2018 ◽  
Vol 7 (4) ◽  
pp. 317-340 ◽  
Author(s):  
Gayathri Kandasamy ◽  
Vadim Annenkov ◽  
Uma Maheswari Krishnan

AbstractCancer continues to be ranked among the top causes of mortality in the world despite the advances made in science and technology. The sub-par performance of cancer therapeutic strategies is due to the transformation of the cancer from a proliferating mass of cells into an impregnable fortress that manipulates and controls the microenvironment to prevent access to any potential cytotoxic factor as well as circumvent the innate immune surveillance processes. Recruitment of the native immune cells to selectively recognize and kill cancer cells can serve to augment the cytotoxic effects of conventional cancer therapeutic approaches. In addition to annihilation of the cancer cells, the induction of memory in the immune cells prevents the possibility of cancer recurrence. However, despite the apparent benefits of cancer immunotherapy, there are several pitfalls that need to be addressed in order to extend these benefits to the clinic. In this context, engineered nanostructured carrier systems can be effectively employed for an activation and priming of the host immune system selectively against the target cancer cells. This has led to the emergence of “nanoimmunotherapy” as an important therapeutic approach against cancer. The use of multi-functional nanomaterials in combination with immunotherapy offers possible solutions to overcome the current limitations in cancer therapy and represents the next generation of “smart therapeutics,” which forms the prime focus of discussion in this review.


2019 ◽  
Vol 20 (16) ◽  
pp. 3934 ◽  
Author(s):  
Gilda Varricchi ◽  
Stefania Loffredo ◽  
Giancarlo Marone ◽  
Luca Modestino ◽  
Poupak Fallahi ◽  
...  

Immune cells play critical roles in tumor prevention as well as initiation and progression. However, immune-resistant cancer cells can evade the immune system and proceed to form tumors. The normal microenvironment (immune cells, fibroblasts, blood and lymphatic vessels, and interstitial extracellular matrix (ECM)) maintains tissue homeostasis and prevents tumor initiation. Inflammatory mediators, reactive oxygen species, cytokines, and chemokines from an altered microenvironment promote tumor growth. During the last decade, thyroid cancer, the most frequent cancer of the endocrine system, has emerged as the fifth most incident cancer in the United States (USA), and its incidence is steadily growing. Inflammation has long been associated with thyroid cancer, raising critical questions about the role of immune cells in its pathogenesis. A plethora of immune cells and their mediators are present in the thyroid cancer ecosystem. Monoclonal antibodies (mAbs) targeting immune checkpoints, such as mAbs anti-cytotoxic T lymphocyte antigen 4 (anti-CTLA-4) and anti-programmed cell death protein-1/programmed cell death ligand-1 (anti-PD-1/PD-L1), have revolutionized the treatment of many malignancies, but they induce thyroid dysfunction in up to 10% of patients, presumably by enhancing autoimmunity. Combination strategies involving immune checkpoint inhibitors (ICIs) with tyrosine kinase (TK) or serine/threonine protein kinase B-raf (BRAF) inhibitors are showing considerable promise in the treatment of advanced thyroid cancer. This review illustrates how different immune cells contribute to thyroid cancer development and the rationale for the antitumor effects of ICIs in combination with BRAF/TK inhibitors.


2020 ◽  
Vol 19 ◽  
pp. 153303382096944
Author(s):  
Muhammed A. Bakhrebah ◽  
Mohammad Nasrullah ◽  
Wesam H. Abdulaal ◽  
Mohammed A. Hassan ◽  
Halima Siddiqui ◽  
...  

Among all cancer types, colorectal cancer is the third most common in men and the second most common in women globally. Generally, the risk of colorectal cancer increases with age, and colorectal cancer is modulated by various genetic alterations. Alterations in the immune response serve a significant role in the development of colorectal cancer. In primary cancer types, immune cells express a variety of inhibitory molecules that dampen the immune response against tumor cells. Additionally, few reports have demonstrated that classical chemotherapy promotes the immunosuppressive microenvironment in both tissues and immune cells. This study assessed the expression levels of genes using RT-qPCR associated with the immune system, including interferon-γ, programmed death-1, β2-microglobulin, human leukocyte antigen-A, CD3e, CD28 and intracellular adhesion molecule 1, in patients with colorectal cancer, as these genes are known to serve important roles in immune regulation during cancer incidence. Gene expression analysis was performed with the whole blood cells of patients with colorectal cancer and healthy volunteers. Compared with the normal controls, programmed death-1was highly expressed in patients with advanced-stage colorectal cancer. Furthermore, the expression of programmed death-1 was higher in patients receiving adjuvant therapy, which suggests the therapy dampened the immune response against tumor cells. The results of the present study indicate that classical adjuvant therapies, which are currently used for patients with colorectal cancer, should be modulated, and a combination of classical therapy with anti-programmed death-1 antibody should be conducted for improved management of patients with colorectal cancer.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Monica C. Gestal ◽  
Laura K. Howard ◽  
Kalyan Dewan ◽  
Hannah M. Johnson ◽  
Mariette Barbier ◽  
...  

AbstractWell-adapted pathogens must evade clearance by the host immune system and the study of how they do this has revealed myriad complex strategies and mechanisms. Classical bordetellae are very closely related subspecies that are known to modulate adaptive immunity in a variety of ways, permitting them to either persist for life or repeatedly infect the same host. Exploring the hypothesis that exposure to immune cells would cause bordetellae to induce expression of important immunomodulatory mechanisms, we identified a putative regulator of an immunomodulatory pathway. The deletion of btrS in B. bronchiseptica did not affect colonization or initial growth in the respiratory tract of mice, its natural host, but did increase activation of the inflammasome pathway, and recruitment of inflammatory cells. The mutant lacking btrS recruited many more B and T cells into the lungs, where they rapidly formed highly organized and distinctive Bronchial Associated Lymphoid Tissue (BALT) not induced by any wild type Bordetella species, and a much more rapid and strong antibody response than observed with any of these species. Immunity induced by the mutant was measurably more robust in all respiratory organs, providing completely sterilizing immunity that protected against challenge infections for many months. Moreover, the mutant induced sterilizing immunity against infection with other classical bordetellae, including B. pertussis and B. parapertussis, something the current vaccines do not provide. These findings reveal profound immunomodulation by bordetellae and demonstrate that by disrupting it much more robust protective immunity can be generated, providing a pathway to greatly improve vaccines and preventive treatments against these important pathogens.


Immunotherapy ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1005-1013 ◽  
Author(s):  
Andreea Cǎlugǎreanu ◽  
Pierre Rompteaux ◽  
Gérôme Bohelay ◽  
Lucas Goldfarb ◽  
Vincent Barrau ◽  
...  

Antiprogramed cell death-1 protein agents represent a therapeutic approach based on stimulating the host’s immune response through blockade of immune checkpoints, inhibitory pathways that dampen the physiological peripheral T-cell immune response and are essential for maintaining self-tolerance. We describe the late onset of severe gastroduodenitis and cholangitis in a nivolumab-treated, metastatic melanoma patient in complete remission. Positron-emission tomography with computed tomography scans showed diffuse fluorodeoxyglucose (FDG) uptake in the stomach preceding upper digestive tract symptoms. Hence, positron-emission tomography with computed tomography might as well be a useful tool for early diagnosis of subclinical gastric toxicity as recently shown for colitis. Furthermore, physicians must be aware and remain vigilant to antiprogramed cell death-1 protein-related digestive toxicity that may appear very late during treatment.


Sign in / Sign up

Export Citation Format

Share Document