scholarly journals Imaging-Based Staging of Hepatic Fibrosis in Patients with Hepatitis B: A Dynamic Radiomics Model Based on Gd-EOB-DTPA-Enhanced MRI

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Rencheng Zheng ◽  
Chunzi Shi ◽  
Chengyan Wang ◽  
Nannan Shi ◽  
Tian Qiu ◽  
...  

Accurate grading of liver fibrosis can effectively assess the severity of liver disease and help doctors make an appropriate diagnosis. This study aimed to perform the automatic staging of hepatic fibrosis on patients with hepatitis B, who underwent gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging with dynamic radiomics analysis. The proposed dynamic radiomics model combined imaging features from multi-phase dynamic contrast-enhanced (DCE) images and time-domain information. Imaging features were extracted from the deep learning-based segmented liver volume, and time-domain features were further explored to analyze the variation in features during contrast enhancement. Model construction and evaluation were based on a 132-case data set. The proposed model achieved remarkable performance in significant fibrosis (fibrosis stage S1 vs. S2–S4; accuracy (ACC) = 0.875, area under the curve (AUC) = 0.867), advanced fibrosis (S1–S2 vs. S3–S4; ACC = 0.825, AUC = 0.874), and cirrhosis (S1–S3 vs. S4; ACC = 0.850, AUC = 0.900) classifications in the test set. It was more dominant compared with the conventional single-phase or multi-phase DCE-based radiomics models, normalized liver enhancement, and some serological indicators. Time-domain features were found to play an important role in the classification models. The dynamic radiomics model can be applied for highly accurate automatic hepatic fibrosis staging.

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1527 ◽  
Author(s):  
Han-Sub Shin ◽  
Hyuk-Yoon Kwon ◽  
Seung-Jin Ryu

Detecting cybersecurity intelligence (CSI) on social media such as Twitter is crucial because it allows security experts to respond cyber threats in advance. In this paper, we devise a new text classification model based on deep learning to classify CSI-positive and -negative tweets from a collection of tweets. For this, we propose a novel word embedding model, called contrastive word embedding, that enables to maximize the difference between base embedding models. First, we define CSI-positive and -negative corpora, which are used for constructing embedding models. Here, to supplement the imbalance of tweet data sets, we additionally employ the background knowledge for each tweet corpus: (1) CVE data set for CSI-positive corpus and (2) Wikitext data set for CSI-negative corpus. Second, we adopt the deep learning models such as CNN or LSTM to extract adequate feature vectors from the embedding models and integrate the feature vectors into one classifier. To validate the effectiveness of the proposed model, we compare our method with two baseline classification models: (1) a model based on a single embedding model constructed with CSI-positive corpus only and (2) another model with CSI-negative corpus only. As a result, we indicate that the proposed model shows high accuracy, i.e., 0.934 of F1-score and 0.935 of area under the curve (AUC), which improves the baseline models by 1.76∼6.74% of F1-score and by 1.64∼6.98% of AUC.


2019 ◽  
Vol XVI (2) ◽  
pp. 1-11
Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Soha Othman Ahmed ◽  
Muhammad Akbar Ali Shah ◽  
Emrah Altun

A new three-parameter continuous model called the exponentiated half-logistic Lomax distribution is introduced in this paper. Basic mathematical properties for the proposed model were investigated which include raw and incomplete moments, skewness, kurtosis, generating functions, Rényi entropy, Lorenz, Bonferroni and Zenga curves, probability weighted moment, stress strength model, order statistics, and record statistics. The model parameters were estimated by using the maximum likelihood criterion and the behaviours of these estimates were examined by conducting a simulation study. The applicability of the new model is illustrated by applying it on a real data set.


Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Jing-Hua Wang ◽  
Sung-Bae Lee ◽  
Dong-Soo Lee ◽  
Chang-Gue Son

Oxidative stress plays a pivotal role in the progression of chronic hepatitis B; however, it is unclear whether the status of blood oxidative stress and antioxidant components differs depending on the degree of hepatic fibrosis. To explore the relationship between oxidative stress/antioxidant capacity and the extent of hepatic fibrosis, fifty-four subjects with liver fibrosis (5.5 ≤ liver stiffness measurement (LSM) score ≤ 16.0 kPa) by chronic hepatitis B virus (HBV) were analyzed. From the analysis of eight kinds of serum oxidative stress/antioxidant profiles and liver fibrosis degrees, the level of total antioxidant capacity (TAC) reflected a negative correlation with the severity of hepatic fibrosis (Pearson correlation, r = −0.35, p = 0.01). Moreover, TAC showed higher sensitivity (73.91%) than the aspartate transaminase (AST) to platelet ratio index (APRI, 56.52%) in the receiver operating characteristic (ROC) curves. Interestingly, the TAC level finely reflected the fibrosis degree in inactive carriers (HBV DNA < 2000 IU/mL), while the APRI did in active carriers (HBV DNA > 2000 IU/mL). In conclusion, TAC is a promising biomarker for evaluating the progression of liver fibrosis in patients with HBV, and this finding may indicate the involvement of TAC-composing factors in the pathogenesis of hepatic fibrosis in chronic HBV carriers.


2021 ◽  
Vol 7 (2) ◽  
pp. 356-362
Author(s):  
Harry Coppock ◽  
Alex Gaskell ◽  
Panagiotis Tzirakis ◽  
Alice Baird ◽  
Lyn Jones ◽  
...  

BackgroundSince the emergence of COVID-19 in December 2019, multidisciplinary research teams have wrestled with how best to control the pandemic in light of its considerable physical, psychological and economic damage. Mass testing has been advocated as a potential remedy; however, mass testing using physical tests is a costly and hard-to-scale solution.MethodsThis study demonstrates the feasibility of an alternative form of COVID-19 detection, harnessing digital technology through the use of audio biomarkers and deep learning. Specifically, we show that a deep neural network based model can be trained to detect symptomatic and asymptomatic COVID-19 cases using breath and cough audio recordings.ResultsOur model, a custom convolutional neural network, demonstrates strong empirical performance on a data set consisting of 355 crowdsourced participants, achieving an area under the curve of the receiver operating characteristics of 0.846 on the task of COVID-19 classification.ConclusionThis study offers a proof of concept for diagnosing COVID-19 using cough and breath audio signals and motivates a comprehensive follow-up research study on a wider data sample, given the evident advantages of a low-cost, highly scalable digital COVID-19 diagnostic tool.


2021 ◽  
Vol 11 (5) ◽  
pp. 2083
Author(s):  
Jia Xie ◽  
Zhu Wang ◽  
Zhiwen Yu ◽  
Bin Guo ◽  
Xingshe Zhou

Ischemic stroke is one of the typical chronic diseases caused by the degeneration of the neural system, which usually leads to great damages to human beings and reduces life quality significantly. Thereby, it is crucial to extract useful predictors from physiological signals, and further diagnose or predict ischemic stroke when there are no apparent symptoms. Specifically, in this study, we put forward a novel prediction method by exploring sleep related features. First, to characterize the pattern of ischemic stroke accurately, we extract a set of effective features from several aspects, including clinical features, fine-grained sleep structure-related features and electroencephalogram-related features. Second, a two-step prediction model is designed, which combines commonly used classifiers and a data filter model together to optimize the prediction result. We evaluate the framework using a real polysomnogram dataset that contains 20 stroke patients and 159 healthy individuals. Experimental results demonstrate that the proposed model can predict stroke events effectively, and the Precision, Recall, Precision Recall Curve and Area Under the Curve are 63%, 85%, 0.773 and 0.919, respectively.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tawfik Yahya ◽  
Nur Azah Hamzaid ◽  
Sadeeq Ali ◽  
Farahiyah Jasni ◽  
Hanie Nadia Shasmin

AbstractA transfemoral prosthesis is required to assist amputees to perform the activity of daily living (ADL). The passive prosthesis has some drawbacks such as utilization of high metabolic energy. In contrast, the active prosthesis consumes less metabolic energy and offers better performance. However, the recent active prosthesis uses surface electromyography as its sensory system which has weak signals with microvolt-level intensity and requires a lot of computation to extract features. This paper focuses on recognizing different phases of sitting and standing of a transfemoral amputee using in-socket piezoelectric-based sensors. 15 piezoelectric film sensors were embedded in the inner socket wall adjacent to the most active regions of the agonist and antagonist knee extensor and flexor muscles, i. e. region with the highest level of muscle contractions of the quadriceps and hamstring. A male transfemoral amputee wore the instrumented socket and was instructed to perform several sitting and standing phases using an armless chair. Data was collected from the 15 embedded sensors and went through signal conditioning circuits. The overlapping analysis window technique was used to segment the data using different window lengths. Fifteen time-domain and frequency-domain features were extracted and new feature sets were obtained based on the feature performance. Eight of the common pattern recognition multiclass classifiers were evaluated and compared. Regression analysis was used to investigate the impact of the number of features and the window lengths on the classifiers’ accuracies, and Analysis of Variance (ANOVA) was used to test significant differences in the classifiers’ performances. The classification accuracy was calculated using k-fold cross-validation method, and 20% of the data set was held out for testing the optimal classifier. The results showed that the feature set (FS-5) consisting of the root mean square (RMS) and the number of peaks (NP) achieved the highest classification accuracy in five classifiers. Support vector machine (SVM) with cubic kernel proved to be the optimal classifier, and it achieved a classification accuracy of 98.33 % using the test data set. Obtaining high classification accuracy using only two time-domain features would significantly reduce the processing time of controlling a prosthesis and eliminate substantial delay. The proposed in-socket sensors used to detect sit-to-stand and stand-to-sit movements could be further integrated with an active knee joint actuation system to produce powered assistance during energy-demanding activities such as sit-to-stand and stair climbing. In future, the system could also be used to accurately predict the intended movement based on their residual limb’s muscle and mechanical behaviour as detected by the in-socket sensory system.


Sign in / Sign up

Export Citation Format

Share Document