scholarly journals Transcription Factors Interact with ABA through Gene Expression and Signaling Pathways to Mitigate Drought and Salinity Stress

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1159
Author(s):  
Quaid Hussain ◽  
Muhammad Asim ◽  
Rui Zhang ◽  
Rayyan Khan ◽  
Saqib Farooq ◽  
...  

Among abiotic stressors, drought and salinity seriously affect crop growth worldwide. In plants, research has aimed to increase stress-responsive protein synthesis upstream or downstream of the various transcription factors (TFs) that alleviate drought and salinity stress. TFs play diverse roles in controlling gene expression in plants, which is necessary to regulate biological processes, such as development and environmental stress responses. In general, plant responses to different stress conditions may be either abscisic acid (ABA)-dependent or ABA-independent. A detailed understanding of how TF pathways and ABA interact to cause stress responses is essential to improve tolerance to drought and salinity stress. Despite previous progress, more active approaches based on TFs are the current focus. Therefore, the present review emphasizes the recent advancements in complex cascades of gene expression during drought and salinity responses, especially identifying the specificity and crosstalk in ABA-dependent and -independent signaling pathways. This review also highlights the transcriptional regulation of gene expression governed by various key TF pathways, including AP2/ERF, bHLH, bZIP, DREB, GATA, HD-Zip, Homeo-box, MADS-box, MYB, NAC, Tri-helix, WHIRLY, WOX, WRKY, YABBY, and zinc finger, operating in ABA-dependent and -independent signaling pathways.

2021 ◽  
Vol 22 (2) ◽  
pp. 522
Author(s):  
Noreen Falak ◽  
Qari Muhammad Imran ◽  
Adil Hussain ◽  
Byung-Wook Yun

Plants are in continuous conflict with the environmental constraints and their sessile nature demands a fine-tuned, well-designed defense mechanism that can cope with a multitude of biotic and abiotic assaults. Therefore, plants have developed innate immunity, R-gene-mediated resistance, and systemic acquired resistance to ensure their survival. Transcription factors (TFs) are among the most important genetic components for the regulation of gene expression and several other biological processes. They bind to specific sequences in the DNA called transcription factor binding sites (TFBSs) that are present in the regulatory regions of genes. Depending on the environmental conditions, TFs can either enhance or suppress transcriptional processes. In the last couple of decades, nitric oxide (NO) emerged as a crucial molecule for signaling and regulating biological processes. Here, we have overviewed the plant defense system, the role of TFs in mediating the defense response, and that how NO can manipulate transcriptional changes including direct post-translational modifications of TFs. We also propose that NO might regulate gene expression by regulating the recruitment of RNA polymerase during transcription.


2021 ◽  
Author(s):  
Dania Machlab ◽  
Lukas Burger ◽  
Charlotte Soneson ◽  
Filippo M. Rijli ◽  
Dirk Schübeler ◽  
...  

AbstractProteins binding to specific nucleotide sequences, such as transcription factors, play key roles in the regulation of gene expression. Their binding can be indirectly observed via associated changes in transcription, chromatin accessibility, DNA methylation and histone modifications. Identifying candidate factors that are responsible for these observed experimental changes is critical to understand the underlying biological processes. Here we present monaLisa, an R/Bioconductor package that implements approaches to identify relevant transcription factors from experimental data. The package can be easily integrated with other Bioconductor packages and enables seamless motif analyses without any software dependencies outside of R.AvailabilitymonaLisa is implemented in R and available on Bioconductor at https://bioconductor.org/packages/monaLisa with the development version hosted on GitHub at https://github.com/fmicompbio/[email protected]


2019 ◽  
Vol 20 (6) ◽  
pp. 1309 ◽  
Author(s):  
Ewa Kalemba ◽  
Ewelina Stolarska

Oxidation of methionine to methionine sulfoxide is a type of posttranslational modification reversed by methionine sulfoxide reductases (Msrs), which present an exceptionally high number of gene copies in plants. The side-form general antioxidant function-specific role of each Msr isoform has not been fully studied. Thirty homologous genes of Msr type A (MsrA) and type B (MsrB) that originate from the genomes of Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa were analyzed in silico. From 109 to 201 transcription factors and responsive elements were predicted for each gene. Among the species, 220 and 190 common transcription factors and responsive elements were detected for the MsrA and MsrB isoforms, respectively. In a comparison of 14 MsrA and 16 MsrB genes, 424 transcription factors and responsive elements were reported in both types of genes, with almost ten times fewer unique elements. The transcription factors mainly comprised plant growth and development regulators, transcription factors important in stress responses with significant overrepresentation of the myeloblastosis viral oncogene homolog (MYB) and no apical meristem, Arabidopsis transcription activation factor and cup-shaped cotyledon (NAC) families and responsive elements sensitive to ethylene, jasmonate, sugar, and prolamine. Gene Ontology term-based functional classification revealed that cellular, metabolic, and developmental process terms and the response to stimulus term dominated in the biological process category. Available experimental transcriptomic and proteomic data, in combination with a set of predictions, gave coherent results validating this research. Thus, new manners Msr gene expression regulation, as well as new putative roles of Msrs, are proposed.


2019 ◽  
Vol 23 (15) ◽  
pp. 1663-1670 ◽  
Author(s):  
Chunyan Ao ◽  
Shunshan Jin ◽  
Yuan Lin ◽  
Quan Zou

Protein methylation is an important and reversible post-translational modification that regulates many biological processes in cells. It occurs mainly on lysine and arginine residues and involves many important biological processes, including transcriptional activity, signal transduction, and the regulation of gene expression. Protein methylation and its regulatory enzymes are related to a variety of human diseases, so improved identification of methylation sites is useful for designing drugs for a variety of related diseases. In this review, we systematically summarize and analyze the tools used for the prediction of protein methylation sites on arginine and lysine residues over the last decade.


2019 ◽  
Vol 70 (19) ◽  
pp. 5355-5374 ◽  
Author(s):  
Dandan Zang ◽  
Jingxin Wang ◽  
Xin Zhang ◽  
Zhujun Liu ◽  
Yucheng Wang

Abstract Plant heat shock transcription factors (HSFs) are involved in heat and other abiotic stress responses. However, their functions in salt tolerance are little known. In this study, we characterized the function of a HSF from Arabidopsis, AtHSFA7b, in salt tolerance. AtHSFA7b is a nuclear protein with transactivation activity. ChIP-seq combined with an RNA-seq assay indicated that AtHSFA7b preferentially binds to a novel cis-acting element, termed the E-box-like motif, to regulate gene expression; it also binds to the heat shock element motif. Under salt conditions, AtHSFA7b regulates its target genes to mediate serial physiological changes, including maintaining cellular ion homeostasis, reducing water loss rate, decreasing reactive oxygen species accumulation, and adjusting osmotic potential, which ultimately leads to improved salt tolerance. Additionally, most cellulose synthase-like (CSL) and cellulose synthase (CESA) family genes were inhibited by AtHSFA7b; some of them were randomly selected for salt tolerance characterization, and they were mainly found to negatively modulate salt tolerance. By contrast, some transcription factors (TFs) were induced by AtHSFA7b; among them, we randomly identified six TFs that positively regulate salt tolerance. Thus, AtHSFA7b serves as a transactivator that positively mediates salinity tolerance mainly through binding to the E-box-like motif to regulate gene expression.


2020 ◽  
Vol 13 (1) ◽  
pp. 294
Author(s):  
Khadija Nawaz ◽  
Rimsha Chaudhary ◽  
Ayesha Sarwar ◽  
Bushra Ahmad ◽  
Asma Gul ◽  
...  

Melatonin, a multifunctional signaling molecule, is ubiquitously distributed in different parts of a plant and responsible for stimulating several physiochemical responses against adverse environmental conditions in various plant systems. Melatonin acts as an indoleamine neurotransmitter and is primarily considered as an antioxidant agent that can control reactive oxygen and nitrogen species in plants. Melatonin, being a signaling agent, induces several specific physiological responses in plants that might serve to enhance photosynthesis, growth, carbon fixation, rooting, seed germination and defense against several biotic and abiotic stressors. It also works as an important modulator of gene expression related to plant hormones such as in the metabolism of indole-3-acetic acid, cytokinin, ethylene, gibberellin and auxin carrier proteins. Additionally, the regulation of stress-specific genes and the activation of pathogenesis-related protein and antioxidant enzyme genes under stress conditions make it a more versatile molecule. Because of the diversity of action of melatonin, its role in plant growth, development, behavior and regulation of gene expression it is a plant’s master regulator. This review outlines the main functions of melatonin in the physiology, growth, development and regulation of higher plants. Its role as anti-stressor agent against various abiotic stressors, such as drought, salinity, temperatures, UV radiation and toxic chemicals, is also analyzed critically. Additionally, we have also identified many new aspects where melatonin may have possible roles in plants, for example, its function in improving the storage life and quality of fruits and vegetables, which can be useful in enhancing the environmentally friendly crop production and ensuring food safety.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zi Wang ◽  
Pan Wang ◽  
Yanan Li ◽  
Hongling Peng ◽  
Yu Zhu ◽  
...  

AbstractHematopoiesis requires finely tuned regulation of gene expression at each stage of development. The regulation of gene transcription involves not only individual transcription factors (TFs) but also transcription complexes (TCs) composed of transcription factor(s) and multisubunit cofactors. In their normal compositions, TCs orchestrate lineage-specific patterns of gene expression and ensure the production of the correct proportions of individual cell lineages during hematopoiesis. The integration of posttranslational and conformational modifications in the chromatin landscape, nucleosomes, histones and interacting components via the cofactor–TF interplay is critical to optimal TF activity. Mutations or translocations of cofactor genes are expected to alter cofactor–TF interactions, which may be causative for the pathogenesis of various hematologic disorders. Blocking TF oncogenic activity in hematologic disorders through targeting cofactors in aberrant complexes has been an exciting therapeutic strategy. In this review, we summarize the current knowledge regarding the models and functions of cofactor–TF interplay in physiological hematopoiesis and highlight their implications in the etiology of hematological malignancies. This review presents a deep insight into the physiological and pathological implications of transcription machinery in the blood system.


Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1012-1017 ◽  
Author(s):  
Tatsuya Kobayashi ◽  
Henry Kronenberg

Regulation of gene expression by transcription factors is one of the major mechanisms for controlling cellular functions. Recent advances in genetic manipulation of model animals has allowed the study of the roles of various genes and their products in physiological settings and has demonstrated the importance of specific transcription factors in bone development. Three lineages of bone cells, chondrocytes, osteoblasts, and osteoclasts, develop and differentiate according to their distinct developmental programs. These cells go through multiple differentiation stages, which are often regulated by specific transcription factors. In this minireview, we will discuss selected transcription factors that have been demonstrated to critically affect bone cell development. Further study of these molecules will lead to deeper understanding in mechanisms that govern development of bone.


2020 ◽  
Author(s):  
Arjun Khakhar ◽  
Cecily Wang ◽  
Ryan Swanson ◽  
Sydney Stokke ◽  
Furva Rizvi ◽  
...  

AbstractSynthetic transcription factors have great promise as tools to explore biological processes. By allowing precise alterations in gene expression, they can help elucidate relationships between gene expression and plant morphology or metabolism. However, the years-long timescales, high cost, and technical skill associated with plant transformation have dramatically slowed their use. In this work, we developed a new platform technology called VipariNama (ViN) in which RNA vectors are used to rapidly deploy synthetic transcription factors and reprogram gene expression in planta. We demonstrate how ViN vectors can direct activation or repression of multiple genes, systemically and persistently over several weeks, and in multiple plant species. We also show how this transcriptional reprogramming can create predictable changes to metabolic and morphological phenotypes in the model plants Nicotiana benthamiana and Arabidopsis thaliana in a matter of weeks. Finally, we show how a model of gibberellin signaling can guide ViN vector-based reprogramming to rapidly engineer plant size in both model species as well as the crop Solanum lycopersicum (tomato). In summary, using VipariNama accelerates the timeline for generating phenotypes from over a year to just a few weeks, providing an attractive alternative to transgenesis for synthetic transcription factor-enabled hypothesis testing and crop engineering.


2021 ◽  
Author(s):  
Sara Artigas-Jerónimo ◽  
Margarita Villar ◽  
Agustín Estrada-Peña ◽  
Adrián Velázquez-Campoy ◽  
Pilar Alberdi ◽  
...  

The Akirin family of transcription cofactors are involved throughout the metazoan in the regulation of different biological processes such as immunity, interdigital regression, muscle and neural development. Akirin do not have catalytic or DNA-binding capability and exert its regulatory function primarily through interacting proteins such as transcription factors, chromatin remodelers, and RNA-associated proteins. In this study, we focused on the human Akirin2 regulome and interactome in neutrophil-like model human Caucasian promyelocytic leukemia HL60 cells. Our hypothesis is that metazoan evolved to have Akirin2 functional complements and different Akirin2-mediated mechanisms for the regulation of gene expression. To address this hypothesis, experiments were conducted using transcriptomics, proteomics and systems biology approaches in akirin2 knockdown and wildtype HL60 cells to characterize Akirin2 gene/protein targets, functional complements and to provide evidence of different mechanisms that may be involved in Akirin2-mediated regulation of gene expression. The results revealed Akirin2 gene/protein targets in multiple biological processes with higher representation of immunity and identified immune response genes as candidate Akirin2 functional complements. In addition to linking chromatin remodelers with transcriptional activation, Akirin2 also interacts with histone H3.1 for regulation of gene expression.


Sign in / Sign up

Export Citation Format

Share Document