scholarly journals Synergism Through WEE1 and CHK1 Inhibition in Acute Lymphoblastic Leukemia

Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1654 ◽  
Author(s):  
Ghelli Luserna Di Rorà ◽  
Bocconcelli ◽  
Ferrari ◽  
Terragna ◽  
Bruno ◽  
...  

Introduction: Screening for synthetic lethality markers has demonstrated that the inhibition of the cell cycle checkpoint kinases WEE1 together with CHK1 drastically affects stability of the cell cycle and induces cell death in rapidly proliferating cells. Exploiting this finding for a possible therapeutic approach has showed efficacy in various solid and hematologic tumors, though not specifically tested in acute lymphoblastic leukemia. Methods: The efficacy of the combination between WEE1 and CHK1 inhibitors in B and T cell precursor acute lymphoblastic leukemia (B/T-ALL) was evaluated in vitro and ex vivo studies. The efficacy of the therapeutic strategy was tested in terms of cytotoxicity, induction of apoptosis, and changes in cell cycle profile and protein expression using B/T-ALL cell lines. In addition, the efficacy of the drug combination was studied in primary B-ALL blasts using clonogenic assays. Results: This study reports, for the first time, the efficacy of the concomitant inhibition of CHK1/CHK2 and WEE1 in ALL cell lines and primary leukemic B-ALL cells using two selective inhibitors: PF-0047736 (CHK1/CHK2 inhibitor) and AZD-1775 (WEE1 inhibitor). We showed strong synergism in the reduction of cell viability, proliferation and induction of apoptosis. The efficacy of the combination was related to the induction of early S-phase arrest and to the induction of DNA damage, ultimately triggering cell death. We reported evidence that the efficacy of the combination treatment is independent from the activation of the p53-p21 pathway. Moreover, gene expression analysis on B-ALL primary samples showed that Chek1 and Wee1 are significantly co-expressed in samples at diagnosis (Pearson r = 0.5770, p = 0.0001) and relapse (Pearson r= 0.8919; p = 0.0001). Finally, the efficacy of the combination was confirmed by the reduction in clonogenic survival of primary leukemic B-ALL cells. Conclusion: Our findings suggest that the combination of CHK1 and WEE1 inhibitors may be a promising therapeutic strategy to be tested in clinical trials for adult ALL.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1276-1276 ◽  
Author(s):  
Andrea Ghelli Luserna Di Rora ◽  
Ilaria Iacobucci ◽  
Neil Beeharry ◽  
Simona Soverini ◽  
Cristina Papayannidis ◽  
...  

Abstract Due to inadequate treatments, the survival rate of adult Acute Lymphoblastic Leukemia (ALL) patients with the exclusion of patients with particular genetic alterations, like the Philadelphia positive patients, is still very low. Moreover even the rate of patient that responds to specific treatment develops relapses during their life. Thus there is a need to improve the efficacy of conventional therapy and to discover novel specific targets. In eukaryotic cells Wee1, ATR/Chk1 and ATM/Chk2 are three pathways involved in cell cycle regulation, DNA damages response and DNA repair. Wee1 is a checkpoint kinase, involved mainly in the regulation of G2/M transition through the inhibitory phosphorylation of both Cyclin-dependent kinase 1 (CDK1) and 2 (CDK2) respectively. This study evaluates the effectiveness of MK-1775, a selective Wee1 inhibitor, as a monotherapy and as chemosensitizer agent for the treatment of B-/T-Acute Lymphoblastic Leukemia. Human B (BV-173, SUPB-15, NALM-6, NALM-19 and REH) and T (MOLT-4, RPMI-8402 and CEM) ALL cell lines were tested in this study. MK-1775 alone strongly reduced the cell viability in a dose and time-dependent manner in all the cell lines treated. The anti-proliferative activity of MK-1775 was accompanied by an increase in apoptotic cells (AnnexinV/Pi staining) and by DNA damage markers (gH2AX and Parp-1 cleavage). Moreover the inhibition of Wee1 disrupted the cell cycle profile by arresting the cells in late S and in G2/M phase. We hypothesized that targeting Chk1, a kinase upstream, of Wee1, would be more effective in reducing cell proliferation. Indeed, the concomitant inhibition of Chk1 and Wee1 kinases, using the PF-0477736 in combination with MK-1775, synergized in the reduction of the cell viability, inhibition of the proliferation index and induction of apoptosis. Moreover the immunofluorescence staining for the DNA damage marker gH2AX and the mitotic marker phosphor-Histone H3 showed that co-treatment with MK-1775 and PF-0477736 induced cell death by mitotic catastrophe. We undertook further studies to understand the immediate clinical potential of the compound, thus MK-1775 was combined with different drugs (Clofarabine, Bosutinib Authentic, and a particular isomer of this compound).The combination between MK-1775 and clofarabine showed an additive effect in terms of reduction of the cell viability and induction of apoptosis. Finally the Wee1 inhibitor was combined with the tyrosine kinase inhibitors Bosutinib and Bos-isomer (Bos-I). Both the isomers in combination with MK-1775 showed an additive effect in term of reduction of the cell viability. Interestedly the cytotoxic effect of Bos-I was stronger on the Philadelphia-negative cell lines in comparison to the positive counterpart. Western blot analysis highlighted that this compound, but not the Bosutinib authentic, interfered with the Chk1/Chk2 and Wee1 pathway. This supported our previous studies showing that Bosutinib and its isomer possess off-target effects against both Wee1 and Chk1 kinases and thus maybe used as a chemosensitizer (Beeharry et al. Cell Cycle 2014). The results of this study in our opinion identify the Wee1 kinase as a promising target for the treatment of ALL not only as a monotherapy but also as chemosensitizer agent to increase the cytotoxicity of different kind of drugs already used in clinical trials. Disclosures Soverini: Novartis, Briston-Myers Squibb, ARIAD: Consultancy. Martinelli:Novartis: Consultancy, Speakers Bureau; Ariad: Consultancy; AMGEN: Consultancy; ROCHE: Consultancy; BMS: Consultancy, Speakers Bureau; MSD: Consultancy; Pfizer: Consultancy.


Author(s):  
Andrea Ghelli Luserna Di Rorà ◽  
Martina Ghetti ◽  
Lorenzo Ledda ◽  
Anna Ferrari ◽  
Matteo Bocconcelli ◽  
...  

AbstractDoxorubicin (Dox) is one of the most commonly used anthracyclines for the treatment of solid and hematological tumors such as B−/T cell acute lymphoblastic leukemia (ALL). Dox compromises topoisomerase II enzyme functionality, thus inducing structural damages during DNA replication and causes direct damages intercalating into DNA double helix. Eukaryotic cells respond to DNA damages by activating the ATM-CHK2 and/or ATR-CHK1 pathway, whose function is to regulate cell cycle progression, to promote damage repair, and to control apoptosis. We evaluated the efficacy of a new drug schedule combining Dox and specific ATR (VE-821) or CHK1 (prexasertib, PX) inhibitors in the treatment of human B−/T cell precursor ALL cell lines and primary ALL leukemic cells. We found that ALL cell lines respond to Dox activating the G2/M cell cycle checkpoint. Exposure of Dox-pretreated ALL cell lines to VE-821 or PX enhanced Dox cytotoxic effect. This phenomenon was associated with the abrogation of the G2/M cell cycle checkpoint with changes in the expression pCDK1 and cyclin B1, and cell entry in mitosis, followed by the induction of apoptosis. Indeed, the inhibition of the G2/M checkpoint led to a significant increment of normal and aberrant mitotic cells, including those showing tripolar spindles, metaphases with lagging chromosomes, and massive chromosomes fragmentation. In conclusion, we found that the ATR-CHK1 pathway is involved in the response to Dox-induced DNA damages and we demonstrated that our new in vitro drug schedule that combines Dox followed by ATR/CHK1 inhibitors can increase Dox cytotoxicity against ALL cells, while using lower drug doses. Graphical abstract • Doxorubicin activates the G2/M cell cycle checkpoint in acute lymphoblastic leukemia (ALL) cells. • ALL cells respond to doxorubicin-induced DNA damages by activating the ATR-CHK1 pathway. • The inhibition of the ATR-CHK1 pathway synergizes with doxorubicin in the induction of cytotoxicity in ALL cells. • The inhibition of ATR-CHK1 pathway induces aberrant chromosome segregation and mitotic spindle defects in doxorubicin-pretreated ALL cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Helen Yarimet Lorenzo-Anota ◽  
Ana Carolina Martínez-Torres ◽  
Daniel Scott-Algara ◽  
Reyes S. Tamez-Guerra ◽  
Cristina Rodríguez-Padilla

Immunotherapies strengthen the immune system to fight multiple diseases such as infections, immunodeficiencies, and autoimmune diseases, and recently, they are being used as an adjuvant in cancer treatment. IMMUNEPOTENT-CRP (I-CRP) is an immunotherapy made of bovine dialyzable leukocyte extract (bDLE) that has chemoprotective and immunomodulatory effects in different cellular populations of the immune system and antitumor activity in different cancer cell lines. Our recent results suggest that the antineoplastic effect of I-CRP is due to the characteristics of cancer cells. To confirm, we evaluated whether the selectivity is due to cell lineage or characteristics of cancer cells, testing cytotoxicity in T-acute lymphoblastic leukemia cells and their cell death mechanism. Here, we assessed the effect of I-CRP on cell viability and cell death. To determine the mechanism of cell death, we tested cell cycle, mitochondrial and nuclear alterations, and caspases and reactive oxygen species (ROS) and their role in cell death mechanism. Our results show that I-CRP does not affect cell viability in noncancer cells and induces selective cytotoxicity in a dose-dependent manner in leukemic cell lines. I-CRP also induces mitochondrial damage through proapoptotic and antiapoptotic protein modulation (Bax and Bcl-2) and ROS production, nuclear alterations including DNA damage (γ-H2Ax), overexpression of p53, cell cycle arrest, and DNA degradation. I-CRP induced ROS-dependent apoptosis in leukemic cells. Overall, here, we show that I-CRP cytotoxicity is selective to leukemic cells, inducing ROS-dependent apoptosis. This research opens the door to further exploration of their role in the immune system and the cell death mechanism that could potentially work in conjunction with other therapies including hematological malignances.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2488-2488 ◽  
Author(s):  
Yana Pikman ◽  
Andrew Furman ◽  
Emily S. Lee ◽  
Andrew E. Place ◽  
Gabriela Alexe ◽  
...  

Abstract While significant progress has been made in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), approximately 10-20% of newly diagnosed patients will experience either induction failure or relapse. Additionally, fewer than 50% of T-ALL patients who experience a relapse are long-term survivors. New targeted therapies are needed for the treatment of this disease. Multiple lines of evidence point to Cyclin D3/CDK4/6 as a potential therapeutic target in T-ALL. Cyclin D3 (CCND3), a direct target of activated NOTCH1, is upregulated in T-ALL, and CCND3 null animals are refractory to NOTCH1 driven T-ALL. CCND3 binds and activates CDK4/6, and the CCND3-CDK complex phosphorylates the tumor suppressor RB leading to cell cycle progression. Previous studies have demonstrated that CDK4/6 small-molecule inhibition is an effective therapeutic strategy for the treatment of NOTCH1-driven T-ALL mouse models. Using the publicly available Genomics of Drug Sensitivity in Cancer data set, we identified NOTCH1 mutations as a biomarker of response and RB mutations as a biomarker of resistance to the CDK4/6 inhibitor palbociclib. We validated that RB null status predicts resistance to the Novartis CDK4/6 inhibitor LEE011 in a panel of T-ALL cell lines. Interestingly, we identified both NOTCH1 mutant, as well as NOTCH1 wildtype, T-ALL cell lines that were sensitive to LEE011 treatment. Mining of publicly available data revealed that CDK6 is consistently marked by a super-enhancer in T-ALL cell lines, both NOTCH1 mutant and wildtype, suggesting another potential reason for sensitivity to CDK4/6 inhibition in this lineage. Treatment with LEE011 also led to a dose-dependent cell cycle arrest and cell death in T-ALL cells, including MOLT4 (NOTCH1 mutant) and MOLT16 (NOTCH1 wildtype). Combinations of drugs with CDK4/6 inhibitors will likely be critical for the successful translation of this drug class because they generally do not induce cell death. Combinations with cytotoxic chemotherapy are predicted to be antagonistic, however, as most of these drugs rely on rapidly proliferating cells, and CDK4/6 inhibition induces cell cycle arrest. To discover effective, and immediately translatable combination therapies with LEE011 in T-ALL, we performed combination studies of LEE011 with agents standardly used for T-ALL treatment, including corticosteroids, methotrexate, mercaptopurine, asparaginase, vincristine and doxorubicin. Combinations of LEE011 with methotrexate, mercaptopurine, vincristine or asparaginase were antagonistic in T-ALL cell lines while the combination with doxorubicin was additive. Combination treatment of LEE011 with corticosteroids had a synergistic effect on cell viability in MOLT4 and MOLT16 cell lines as measured by excess over Bliss additive and isobologram analyses. This combination also decreased phospho RB signaling, increased cell cycle arrest and induced cell death to a greater degree than either drug alone. LEE011 treatment increased CCND3 protein levels, an effect mitigated by glucocorticoid treatment, one possible mechanism contributing to the observed synergy. Additionally, the combination of LEE011 with everolimus, an mTOR inhibitor, was synergistic in these cell lines. We next extended testing to in vivo models of T-ALL. In a MOLT16 orthotopic mouse model, the combination of LEE011 and everolimus significantly prolonged mouse survival compared to treatment with each individual drug alone. The combination of LEE011 with dexamethasone did not extend survival over treatment with LEE011 alone and dexamethasone was inactive in vivo. Both LEE011 and everolimus had on-target activity in the treated mice as measured by inhibition of peripheral blood phospho-RB and phospho-4EBP1. We then tested the combination of LEE011 with dexamethasone in a second mouse model, a MOLT4 orthotopic model. Here, the combination of LEE011 with dexamethasone was more effective in prolonging survival compared to each treatment alone, supporting a heterogeneous response to the combination of LEE011 with dexamethasone in vivo. We conclude that LEE011 is active in T-ALL, and that combination therapy with corticosteroids and/or mTOR inhibitors warrants further investigation in the clinical setting. Disclosures Kim: Novartis Pharmaceuticals: Employment. Stegmaier:Novartis Pharmaceuticals: Consultancy.


2017 ◽  
Author(s):  
Andrea Ghelli Luserna di Rorà ◽  
Ilaria Iacobucci ◽  
Enrica Imbrogno ◽  
Anna Ferrari ◽  
Valentina Robustelli ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5016
Author(s):  
Aveen N. Adham ◽  
Mohamed Elamir F. Hegazy ◽  
Alaadin M. Naqishbandi ◽  
Thomas Efferth

Thymus vulgaris and Arctium lappa have been used as a folk remedy in the Iraqi Kurdistan region to deal with different health problems. The aim of the current study is to investigate the cytotoxicity of T. vulgaris and A. lappa in leukemia and multiple myeloma (MM) cell lines and determine the mode of cell death triggered by the most potent cytotoxic fractions of both plants in MM. Resazurin assay was used to evaluate cytotoxic and ferroptosis activity, apoptosis, and modulation in the cell cycle phase were investigated via Annexin V-FITC/PI dual stain and cell-cycle arrest assays. Furthermore, we used western blotting assay for the determination of autophagy cell death. n-Hexane, chloroform, ethyl acetate, and butanol fractions of T. vulgaris and A. lappa exhibited cytotoxicity in CCRF-CEM and CEM/ADR 5000 cell lines at concentration range 0.001–100 μg/mL with potential activity revealed by chloroform and ethyl acetate fractions. NCI-H929 displayed pronounced sensitivity towards T. vulgaris (TCF) and A. lappa (ACF) chloroform fractions with IC50 values of 6.49 ± 1.48 and 21.9 ± 0.69 μg/mL, respectively. TCF induced apoptosis in NCI-H929 cells with a higher ratio (71%), compared to ACF (50%) at 4 × IC50. ACF demonstrated more potent autophagy activity than TCF. TCF and ACF induced cell cycle arrest and ferroptosis. Apigenin and nobiletin were identified in TCF, while nobiletin, ursolic acid, and lupeol were the main compounds identified in ACF. T. vulgaris and A. lappa could be considered as potential herbal drug candidates, which arrest cancer cell proliferation by induction of apoptosis, autophagic, and ferroptosis.


2020 ◽  
Author(s):  
Margherita Vieri ◽  
Christian Preisinger ◽  
Mirle Schemionek ◽  
Azam Salimi ◽  
John B Patterson ◽  
...  

Abstract BCR-ABL1-positive acute lymphoblastic leukemia (ALL) cell survival is dependent on the inositol-requiring enzyme 1 alpha (IRE1α) branch of the unfolded protein response. In the current study, we have focused on exploring the efficacy of a simultaneous pharmacological inhibition of BCR-ABL1 and IRE1α in Philadelphia-positive (Ph+) ALL using tyrosine kinase inhibitor (TKI) nilotinib and the IRE1α inhibitor MKC-8866. The combination of 0.5 µM nilotinib and 30 µM MKC-8866 in Ph+ ALL cell lines led to a synergistic effect on cell viability. To mimic this dual inhibition on a genetic level, pre-B-cells from conditional Xbp1+/fl mice were transduced with a BCR-ABL1 construct and with either tamoxifen-inducible cre or empty vector. Cells showed a significant sensitization to the effect of TKIs after the induction of the heterozygous deletion. Finally, we performed a phosphoproteomic analysis on Ph+ ALL cell lines treated with the combination of nilotinib and MKC-8866 to identify potential targets involved in their synergistic effect. An enhanced activation of p38 mitogen-activated protein kinase α (p38α MAPK) was identified. In line with this findings, p38 MAPK and, another important endoplasmic reticulum-stress-related kinase, c-Jun N-terminal kinase (JNK) were found to mediate the potentiated cytotoxic effect induced by the combination of MKC-8866 and nilotinib since the targeting of p38 MAPK with its specific inhibitor BIRB-796 or JNK with JNK-in-8 hindered the synergistic effect observed upon treatment with nilotinib and MKC-8866. In conclusion, the identified combined action of nilotinib and MKC-8866 might represent a successful therapeutic strategy in high-risk Ph+ ALL.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 37-38
Author(s):  
Maria Cosenza ◽  
Stefano Sacchi ◽  
Samantha Pozzi

Introduction. Bcl-2 family proteins comprise anti-apoptotic and pro-apoptotic proteins. Interaction between these proteins, as well as severe regulation of their expression, mediates cell survival and can quickly induce cell death. Venetoclax is Bcl-2-targeting that has shown preclinical and clinical activity in hematologic malignancies. Due to the development of resistance and the loss of dependence on the target protein, the monotherapy may be insufficient for maximal effectiveness. To circumvent the resistance mechanisms, many preclinical studies have shown that combination of venetoclax with other agents may represent a more effective therapeutic strategy. Ubiquitin-proteasome signaling pathway is a potential target that plays an important role in the proteolysis of key regulatory proteins. Proteasome inhibitors include ixazomib that inhibits cell growth and induces apoptosis in hematological malignancies cells resistant to conventional therapies and bortezomib. Objective: To analyze the preclinical efficacy and associated biological effects of venetoclax combined with ixazomib in a panel of lymphoma cell lines with diverse expression levels of Bcl-2 and other Bcl-2 family proteins. Methods: 12 lymphoma cell lines including FL (RL, WSU-NHL, Karpas422), MCL (Jeko1, Granta519), DLBCL (OCI-LY3, OCI-LY18), CTCL (Hut-78), ALCL (Karpas299), HL (L1236, L540), CLL (Mec1) and two MCL primary patient samples were exposed to venetoclax (0.01 - 8 µM) and ixazomib (10 - 2000 nM) alone for 24 - 72 hours to calculate IC50. Subsequently, lymphoma cells were exposed to venetoclax (0.015 - 25 nM) in combination with ixazomib (0.015 - 0.5 nM) for 24 hours. Cell viability was determined by MTT. Coefficient of synergy (combination index - CI) was calculated using CalcuSyn. Cell cycle and induction of apoptosis were evaluated by flow cytometry and changes in Bcl-2 family members, caspase activation and AKT phosphorylation were determined by western blotting. Results. In vitro, venetoclax and ixazomib alone induced cell death in a dose- and time-dependent manner against lymphoma cell lines. The IC50 is between 0.5 and 8 µM for venetoclax and between 12 and 1250 nM for ixazomib. The combination of venetoclax (0.03, 0.06, 12.5, 25 nM) with ixazomib (0.03, 0.06, 0.25, 0.5 nM) produced a synergistic effect (CI < 1) after 24 h of treatment in the most lymphoma cells lines leading to inhibition of cell growth and induction of apoptosis between 26 % and 59 % accompanied by increased with cleavage of caspases-3, -9 and PARP. We observed an additive effect (CI = 1) in Jeko1 (MCL) and MEC1 cells (CLL) and antagonist effect (CI > 1) Hut-78 cells (CTCL). Synergistic effect has been seen in two MCL primary patient samples (CI = 0.5 - 0.7). In sensitive lymphoma cells, the combination abrogated colony formation in the methylcellulose medium. When lymphoma cell lines were co-cultured with mesenchymal stromal cells with both drugs we observed a decrease of cell viability and a fraction of apoptotic cells indicating that drug combination may overcome the tumor promoting effects of stromal cells. The apoptosis induced in FL and Granta519 cells (MCL) by drug combination was accompanied by partial downregulation of Bcl-2 and strong upregulation of Bax, Bad, Bim and Noxa proteins. Jeko-1 cells were less sensitive to venetoclax-ixazomib combination-induced apoptosis. Western blot analysis showed a differential expression of Bcl-2, Mcl-1 and Bcl-XL proteins in FL, MCL and HL cell lines. Jeko-1 cells showed a normal expression of Bcl-2 and Mcl-1 proteins and high Bcl-xL protein level. Co-expression of related anti-apoptotic Bcl-2 family proteins could limit activity of treatment. Combined treatment induced G0/G1 cell cycle arrest and increased the sub-G1 population that was linked by the upregulation of p27 and p21. In addition, in RL, WSU-NHL and Granta519, enhanced cell death is associated with AKT inactivation and with a reduction of p-4EBP1, leading to decreased levels of c-MYC. Conclusion. Venetoclax exhibits strong synergistic activity with ixazomib in lymphoma cells. Studies are still ongoing and signaling pathways that promote the combination of venetoclax with ixazomib are to be analyzed. These data offer a rationale to continue exploring venetoclax-ixazomib combination and suggest that suppression of Bcl-2 family protein driven survival signaling may be one important mechanism for combination synergy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1880-1880
Author(s):  
Georg Seifert ◽  
Patrick Jesse ◽  
Aram Prokop ◽  
Tobias Reindl ◽  
Stephan Lobitz ◽  
...  

Abstract Mistletoe (Viscum album) is one of the most used alternative cancer therapies applied as monotherapy or in combination with conventional therapies. Anti-tumor effects of mistletoe (MT) extracts were related to cytostatic and immunomodulatory effects observed in vitro. Aqueous MT extracts contain the three mistletoe lectins I, II and III as one predominant group of biologically active agents. The MT lectins inhibit protein biosynthesis by inactivating the 60S ribosomal subunit. Mistletoe lectin-I (ML-I) is one important apoptosis inducing compound. It is a heterodimer that consists of a cytotoxic A-chain (ribosome inactivating protein, RIP type 1) linked by a carbohydrate binding B-chain for cellular lectin uptake. However, although MT is widely used, there is a lack of scientific preclinical and clinical data. Here, we describe for the first time efficacy and mechanism of MT extracts against lymphoblastic leukemia in vitro and in vivo. For this purpose, we first investigated both the cytotoxic effect and mechanism of action of two standardized aqueous MT extracts (MT obtained from fir trees (MT-A); MT obtained from pine trees (MT-P)) and isolated ML-I, in three human acute lymphoblastic leukemia (ALL) cell lines (NALM-6, sup-B-15 and REH). MT-A, MT-P and ML-I clearly inhibited cell proliferation as determined by LDH reslease assays at very low concentrations (ML-I LD50 from 0,05 ng/ml to 10 ng/ml depending on the host tree) with MT-P being the most cytotoxic extract. The mechanism of cell death was determined by DNA-fragmentation assays. These indicated dose dependent induction of apoptosis as the main mechanism of cell death. Finally, we evaluated the efficacy of MT-A and MT-P in an in vivo SCID-model of pre-B ALL (NALM-6). For this purpose, mice (n=8/group) were injected i.v. with 1 × 106NALM6 cells and treated by intraperitoneal injections four times per week for 3 weeks (day 1–4; 7–11; 14–18) at varying doses (1, 5 and 50 mg/Kg (plant weight/body weight)). Mice (n=8) treated with PBS and cyclophosphamide (100 mg/kg, once on day 1) were used as negative and positive controls, respectively. Toxicity, peripheral blood counts, bodyweight and survival was determined over time. Interestingly, both MT extracts in all tested concentrations significantly improved survival (up to 55,4 days) in contrast to controls (34,6 days). Furthermore, no hematologic side effects were observed from this treatment as indicated by completely stable blood counts. Also the body weight of treated animals remained stable over time indicating a complete absence of systemic toxicity in the selected dose range. In summary, we demonstrate for the first time efficacy and mechanism of MT extracts against ALL in vitro and in vivo and hereby provide an important base line for the design of clinical trials with these compounds.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2478-2478
Author(s):  
Andrea Ghelli Luserna Di Rora ◽  
Ilaria Iacobucci ◽  
Enrica Imbrogno ◽  
Enrico Derenzini ◽  
Anna Ferrari ◽  
...  

Abstract Nowadays the effectiveness of the treatments for adult Acute Lymphoblastic Leukemia (ALL) patients is still inadequate and frequently many patients after years of response to treatments develop relapses. Thus there is a need to find novel targets for specific therapies and to maximize the effect of the actual treatments. Recently different Checkpoint Kinase (Chk)1/Chk2 inhibitors has been assessed for the treatment of different type of cancers but only few studies have been performed on hematological diseases. We evaluated the effectiveness of the Chk1 inhibitor, LY2606368, as single agent and in combination with tyrosine kinase inhibitors (imatinib and dasatinib) or with the purine nucleoside antimetabolite clofarabine in B-/T- acute lymphoblastic leukemia (ALL) cell lines and in primary blasts. Human B (BV-173, SUPB-15, NALM-6, NALM-19 and REH) and T (MOLT-4, RPMI-8402 and CEM) ALL cell lines were incubated with increasing concentrations of drug (1-100 nM) for 24 and 48 hours and the reduction of the cell viability was evaluated using WST-1 reagent. LY2606368 deeply reduced the cell viability in a dose and time dependent manner in all the cell lines, with the BV-173 (6.33 nM IC50 24hrs) and RPMI-8402 (8.07 nM IC50 24hrs) being the most sensitive while SUP-B15 (61.4 nM IC50 24hrs) and REH (96.7 nM IC50 24hrs) being the less sensitive cell lines. Moreover the sensitivity to the compound was no correlated with the different sub-type of ALL or with the mutational status of p53, which is a marker of the functionality of the G1/S checkpoint. The cytotoxic activity was confirmed by the significant increment of apoptosis cells (Annexin V/Propidium Iodide), by the increment of gH2AX foci and by the activation of different apoptotic markers (Parp-1 and pro-Caspase3 cleavage). To understand the relationship between the activation of apoptosis and the effect on cell cycle and to identify hypothetical mechanisms of death, different cell cycle analyses were performed (Propidium Iodide staining). The inhibition of Chk1, deeply changed the cell cycle profile. Indeed in all the cell lines the percentage of cells in S phase and in G2/M phase were reduced by the treatment while the numbers of cells in sub-G1 and G1 phase were increased. The hypothetical function of LY2606368 as a chemosensitizer agent was evaluated combining the compound with different drugs normally used in clinical trials. For each drugs the combination strongly reduced the cell viability when compared to the cytotoxic effect of the single drugs. Moreover the combination showed an additive efficacy in term of induction of DNA damages as showed by the increase number of gH2AX foci and the activation of pChk1 (ser 317). The results found on the cell lines were confirmed also using primary leukemic blast isolated from adult Philadelphia-positive ALL patients. Indeed LY2606368 as single agent or in combination with the Tki, imatinib, was able to deeply reduce the cell viability and to induce DNA damages (gH2AX foci). In conclusion LY2606368 showed a strong cytotoxic activity on B-/T-All cell lines and primary blasts as single agent and in combination with other drugs. In our opinion this data are the basis for a future clinical evaluation of this compound in the treatment of leukemia. Supported by ELN, AIL, AIRC, progetto Regione-Università 2010-12 (L. Bolondi), FP7 NGS-PTL project. Disclosures Soverini: Novartis, Briston-Myers Squibb, ARIAD: Consultancy. Cavo:JANSSEN, CELGENE, AMGEN: Consultancy. Martinelli:ROCHE: Consultancy; Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; Pfizer: Consultancy; Ariad: Consultancy; AMGEN: Consultancy; MSD: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document