scholarly journals Targeting Post-Translational Regulation of p53 in Colorectal Cancer by Exploiting Vulnerabilities in the p53-MDM2 Axis

Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 219
Author(s):  
Chunwei W. Lai ◽  
Cindy Xie ◽  
Jean-Pierre Raufman ◽  
Guofeng Xie

The role played by the key tumor suppressor gene p53 and the implications of p53 mutations for the development and progression of neoplasia continue to expand. This review focuses on colorectal cancer and the regulators of p53 expression and activity identified over the past decade. These newly recognized regulatory mechanisms include (1) direct regulation of mouse double minute 2 homolog (MDM2), an E3 ubiquitin-protein ligase; (2) modulation of the MDM2-p53 interaction; (3) MDM2-independent p53 degradation; and (4) inhibition of p53 nuclear translocation. We positioned these regulatory mechanisms in the context of p53 missense mutations, which not only evade canonical p53 degradation machinery but also exhibit gain-of-function phenotypes that enhance tumor survival and metastasis. Lastly, we discuss current and potential therapeutic strategies directed against p53 mutant-bearing tumors.

Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1143
Author(s):  
Jinho Seo ◽  
Daehyeon Seong ◽  
Seung Ri Lee ◽  
Doo-Byoung Oh ◽  
Jaewhan Song

Tumorigenesis can be induced by various stresses that cause aberrant DNA mutations and unhindered cell proliferation. Under such conditions, normal cells autonomously induce defense mechanisms, thereby stimulating tumor suppressor activation. ARF, encoded by the CDKN2a locus, is one of the most frequently mutated or deleted tumor suppressors in human cancer. The safeguard roles of ARF in tumorigenesis are mainly mediated via the MDM2-p53 axis, which plays a prominent role in tumor suppression. Under normal conditions, low p53 expression is stringently regulated by its target gene, MDM2 E3 ligase, which induces p53 degradation in a ubiquitin-proteasome-dependent manner. Oncogenic signals induced by MYC, RAS, and E2Fs trap MDM2 in the inhibited state by inducing ARF expression as a safeguard measure, thereby activating the tumor-suppressive function of p53. In addition to the MDM2-p53 axis, ARF can also interact with diverse proteins and regulate various cellular functions, such as cellular senescence, apoptosis, and anoikis, in a p53-independent manner. As the evidence indicating ARF as a key tumor suppressor has been accumulated, there is growing evidence that ARF is sophisticatedly fine-tuned by the diverse factors through transcriptional and post-translational regulatory mechanisms. In this review, we mainly focused on how cancer cells employ transcriptional and post-translational regulatory mechanisms to manipulate ARF activities to circumvent the tumor-suppressive function of ARF. We further discussed the clinical implications of ARF in human cancer.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3465
Author(s):  
Aya Saleh ◽  
Ruth Perets

Mutations in tumor suppressor gene TP53, encoding for the p53 protein, are the most ubiquitous genetic variation in human ovarian HGSC, the most prevalent and lethal histologic subtype of epithelial ovarian cancer (EOC). The majority of TP53 mutations are missense mutations, leading to loss of tumor suppressive function of p53 and gain of new oncogenic functions. This review presents the clinical relevance of TP53 mutations in HGSC, elaborating on several recently identified upstream regulators of mutant p53 that control its expression and downstream target genes that mediate its roles in the disease. TP53 mutations are the earliest genetic alterations during HGSC pathogenesis, and we summarize current information related to p53 function in the pathogenesis of HGSC. The role of p53 is cell autonomous, and in the interaction between cancer cells and its microenvironment. We discuss the reduction in p53 expression levels in tumor associated fibroblasts that promotes cancer progression, and the role of mutated p53 in the interaction between the tumor and its microenvironment. Lastly, we discuss the potential of TP53 mutations to serve as diagnostic biomarkers and detail some more advanced efforts to use mutated p53 as a therapeutic target in HGSC.


Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Erin N Asleson ◽  
Dennis M Livingston

Abstract We investigated the stability of the Saccharomyces cerevisiae Rad52 protein to learn how a cell controls its quantity and longevity. We measured the cellular levels of wild-type and mutant forms of Rad52p when expressed from the RAD52 promoter and the half-lives of the various forms of Rad52p when expressed from the GAL1 promoter. The wild-type protein has a half-life of 15 min. rad52 mutations variably affect the cellular levels of the protein products, and these levels correlate with the measured half-lives. While missense mutations in the N terminus of the protein drastically reduce the cellular levels of the mutant proteins, two mutations—one a deletion of amino acids 210-327 and the other a missense mutation of residue 235—increase the cellular level and half-life more than twofold. These results suggest that Rad52p is subject to post-translational regulation. Proteasomal mutations have no effect on Rad52p half-life but increase the amount of RAD52 message. In contrast to Rad52p, the half-life of Rad51p is >2 hr, and RAD51 expression is unaffected by proteasomal mutations. These differences between Rad52p and Rad51p suggest differential regulation of two proteins that interact in recombinational repair.


2021 ◽  
Vol 37 ◽  
pp. 101560
Author(s):  
Michael S. Johns ◽  
Nicholas J. Petrelli
Keyword(s):  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zijian Chen ◽  
Zenghong Huang ◽  
Yanxin Luo ◽  
Qi Zou ◽  
Liangliang Bai ◽  
...  

Abstract Background Neurotrophic tropomyosin receptor kinases (NTRKs) are a gene family function as oncogene or tumor suppressor gene in distinct cancers. We aimed to investigate the methylation and expression profiles and prognostic value of NTRKs gene in colorectal cancer (CRC). Methods An analysis of DNA methylation and expression profiles in CRC patients was performed to explore the critical methylations within NTRKs genes. The methylation marker was validated in a retrospectively collected cohort of 229 CRC patients and tested in other tumor types from TCGA. DNA methylation status was determined by quantitative methylation-specific PCR (QMSP). Results The profiles in six CRC cohorts showed that NTRKs gene promoter was more frequently methylated in CRC compared to normal mucosa, which was associated with suppressed gene expression. We identified a specific methylated region within NTRK3 promoter targeted by cg27034819 and cg11525479 that best predicted survival outcome in CRC. NTRK3 promoter methylation showed independently predictive value for survival outcome in the validation cohort (P = 0.004, HR 2.688, 95% CI [1.355, 5.333]). Based on this, a nomogram predicting survival outcome was developed with a C-index of 0.705. Furthermore, the addition of NTRK3 promoter methylation improved the performance of currently-used prognostic model (AIC: 516.49 vs 513.91; LR: 39.06 vs 43.64, P = 0.032). Finally, NTRK3 promoter methylation also predicted survival in other tumors, including pancreatic cancer, glioblastoma and stomach adenocarcinoma. Conclusions This study highlights the essential value of NTRK3 methylation in prognostic evaluation and the potential to improve current prognostic models in CRC and other tumors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhihao Fang ◽  
Yiqiu Hu ◽  
Jinhui Hu ◽  
Yanqin Huang ◽  
Shu Zheng ◽  
...  

AbstractAs the predominant modification in RNA, N6-methyladenosine (m6A) has attracted increasing attention in the past few years since it plays vital roles in many biological processes. This chemical modification is dynamic, reversible and regulated by several methyltransferases, demethylases and proteins that recognize m6A modification. M6A modification exists in messenger RNA and affects their splicing, nuclear export, stability, decay, and translation, thereby modulating gene expression. Besides, the existence of m6A in noncoding RNAs (ncRNAs) could also directly or indirectly regulated gene expression. Colorectal cancer (CRC) is a common cancer around the world and of high mortality. Increasing evidence have shown that the changes of m6A level and the dysregulation of m6A regulatory proteins have been implicated in CRC carcinogenesis and progression. However, the underlying regulation laws of m6A modification to CRC remain elusive and better understanding of these mechanisms will benefit the diagnosis and therapy. In the present review, the latest studies about the dysregulation of m6A and its regulators in CRC have been summarized. We will focus on the crucial roles of m6A modification in the carcinogenesis and development of CRC. Moreover, we will also discuss the potential applications of m6A modification in CRC diagnosis and therapeutics.


2019 ◽  
Vol 8 (10) ◽  
pp. 280 ◽  
Author(s):  
Aznar

Over the past decade, the problems arising from social communication have yet again become burning issues on social and political agendas. Information disorder, hate speeches, information manipulation, social networking sites, etc., have obliged the most important European institutions to reflect on how to meet the collective challenges that social communication currently poses in the new millennium. These European Institutions have made a clear commitment to self-regulation. The article reviews some recent European initiatives to deal with information disorder that has given a fundamental role to self-regulation. To then carry out a theoretical review of the normative notion of self-regulation that distinguishes it from the neo-liberal economicist conception. To this end, (1) a distinction is drawn between the (purportedly) self-regulating market and (2) a broader conception of self-regulation inherent not to media companies or corporations, but to the social subsystem of social communication, is proposed. This involves increasing the number of self-regulatory mechanisms that may contribute to improve social communication, and reinforcing the commitment of those who should exercise such self-regulation, including not only media companies but also the professionals working at them and the public at large.


1991 ◽  
Vol 275 (3) ◽  
pp. 813-816 ◽  
Author(s):  
G Cairo ◽  
E Rappocciolo ◽  
L Tacchini ◽  
L Schiaffonati

The proportion of ferritin light-chain and heavy-chain subunits (L and H) present in the ferritin multimeric shell varies between different tissues. To identify the regulatory mechanisms responsible for the greater amount of L in liver than in heart isoferritins, we analysed ferritin-gene expression at the RNA and protein levels in these two tissues of the rat. In the heart the ratio between the amount of L and H, at the level both of synthesis and accumulation, is about 1 and is the same as the ratio between their respective mRNAs. In contrast, in the liver, the ratio between the L- and H-mRNAs is approx. 2 and cannot entirely explain the large predominance of L in isoferritins in this tissue. Since in the liver the L-mRNA is neither preferentially associated with polyribosomes nor translated more efficiently than its H- counterpart, it seems that the liver-specific isoferritin profile is determined by a combination of pre- and post-translational mechanisms, whereas in heart the post-translational regulation does not seem to be relevant and the tissue-specific pattern is determined at the level of mRNA accumulation.


Sign in / Sign up

Export Citation Format

Share Document