scholarly journals Elucidating Drug-Like Compounds and Potential Mechanisms of Corn Silk (Stigma Maydis) against Obesity: A Network Pharmacology Study

2021 ◽  
Vol 43 (3) ◽  
pp. 1906-1936
Author(s):  
Ki-Kwang Oh ◽  
Md. Adnan ◽  
Dong-Ha Cho

Corn silk (Stigma Maydis) has been utilized as an important herb against obesity by Chinese, Korean, and Native Americans, but its phytochemicals and mechanisms(s) against obesity have not been deciphered completely. This study aimed to identify promising bioactive constituents and mechanism of action(s) of corn silk (CS) against obesity via network pharmacology. The compounds from CS were identified using Gas Chromatography Mass Spectrometry (GC-MS) and were confirmed ultimately by Lipinski’s rule via SwissADME. The relationships of the compound-targets or obesity-related targets were confirmed by public bioinformatics. The signaling pathways related to obesity, protein-protein interaction (PPI), and signaling pathways-targets-bioactives (STB) were constructed, visualized, and analyzed by RPackage. Lastly, Molecular Docking Test (MDT) was performed to validate affinity between ligand(s) and protein(s) on key signaling pathway(s). We identified a total of 36 compounds from CS via GC-MS, all accepted by Lipinski’s rule. The number of 36 compounds linked to 154 targets, 85 among 154 targets related directly to obesity-targets (3028 targets). Of the final 85 targets, we showed that the PPI network (79 edges, 357 edges), 12 signaling pathways on a bubble chart, and STB network (67 edges, 239 edges) are considered as therapeutic components. The MDT confirmed that two key activators (β-Amyrone, β-Stigmasterol) bound most stably to PPARA, PPARD, PPARG, FABP3, FABP4, and NR1H3 on the PPAR signaling pathway, also, three key inhibitors (Neotocopherol, Xanthosine, and β-Amyrone) bound most tightly to AKT1, IL6, FGF2, and PHLPP1 on the PI3K-Akt signaling pathway. Overall, we provided promising key signaling pathways, targets, and bioactives of CS against obesity, suggesting crucial pharmacological evidence for further clinical testing.

2021 ◽  
Vol 22 (17) ◽  
pp. 9372
Author(s):  
Ki-Kwang Oh ◽  
Md. Adnan ◽  
Dong-Ha Cho

M. alba L. is a valuable nutraceutical plant rich in potential bioactive compounds with promising anti-gouty arthritis. Here, we have explored bioactives, signaling pathways, and key proteins underlying the anti-gout activity of M. alba L. leaves for the first-time utilizing network pharmacology. Bioactives in M. alba L. leaves were detected through GC-MS (Gas Chromatography-Mass Spectrum) analysis and filtered by Lipinski’s rule. Target proteins connected to the filtered compounds and gout were selected from public databases. The overlapping target proteins between bioactives-interacted target proteins and gout-targeted proteins were identified using a Venn diagram. Bioactives-Proteins interactive networking for gout was analyzed to identify potential ligand-target and visualized the rich factor on the R package via the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on STRING. Finally, a molecular docking test (MDT) between bioactives and target proteins was analyzed via AutoDock Vina. Gene Set Enrichment Analysis (GSEA) demonstrated that mechanisms of M. alba L. leaves against gout were connected to 17 signaling pathways on 26 compounds. AKT1 (AKT Serine/Threonine Kinase 1), γ-Tocopherol, and RAS signaling pathway were selected as a hub target, a key bioactive, and a hub signaling pathway, respectively. Furthermore, three main compounds (γ-Tocopherol, 4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene) tyramine, and Lanosterol acetate) and three key target proteins—AKT1, PRKCA, and PLA2G2A associated with the RAS signaling pathway were noted for their highest affinity on MDT. The identified three key bioactives in M. alba L. leaves might contribute to recovering gouty condition by inactivating the RAS signaling pathway.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 703
Author(s):  
Kikwang Oh ◽  
Md. Adnan ◽  
Dongha Cho

Zanthoxylum piperitum fruits (ZPFs) have been demonstrated favorable clinical efficacy on rheumatoid arthritis (RA), but its compounds and mechanisms against RA have not been elucidated. This study was to investigate the compounds and mechanisms of ZPFs to alleviate RA via network pharmacology. The compounds from ZPFs were detected by gas chromatography–mass spectrometry (GC-MS) and screened to select drug-likeness compounds through SwissADME. Targets associated with bioactive compounds or RA were identified utilizing bioinformatics databases. The signaling pathways related to RA were constructed; interactions among targets; and signaling pathways-targets-compounds (STC) were analyzed by RPackage. Finally, a molecular docking test (MDT) was performed to validate affinity between targets and compounds on key signaling pathway(s). GC-MS detected a total of 85 compounds from ZPFs, and drug-likeness properties accepted all compounds. A total of 216 targets associated with compounds 3377 RA targets and 101 targets between them were finally identified. Then, a bubble chart exhibited that inactivation of MAPK (mitogen-activated protein kinase) and activation of PPAR (peroxisome proliferator-activated receptor) signaling pathway might be key pathways against RA. Overall, this work suggests that seven compounds from ZPFs and eight targets might be multiple targets on RA and provide integrated pharmacological evidence to support the clinical efficacy of ZPFs on RA.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xin Shen ◽  
Rui Yang ◽  
Jianpeng An ◽  
Xia Zhong

Prunella vulgaris (PV) has a long history of application in traditional Chinese and Western medicine as a remedy for the treatment of subacute thyroiditis (SAT). This study applied network pharmacology to elucidate the mechanism of the effects of PV against SAT. Components of the potential therapeutic targets of PV and SAT-related targets were retrieved from databases. To construct a protein-protein interaction (PPI) network, the intersection of SAT-related targets and PV-related targets was input into the STRING platform. Gene ontology (GO) analysis and KEGG pathway enrichment analysis were carried out using the DAVID database. Networks were constructed by Cytoscape for visualization. The results showed that a total of 11 compounds were identified according to the pharmacokinetic parameters of ADME. A total of 126 PV-related targets and 2207 SAT-related targets were collected, and 83 overlapping targets were subsequently obtained. The results of the KEGG pathway and compound-target-pathway (C-T-P) network analysis suggested that the anti-SAT effect of PV mainly occurs through quercetin, luteolin, kaempferol, and beta-sitosterol and is most closely associated with their regulation of inflammation and apoptosis by targeting the PIK3CG, MAPK1, MAPK14, TNF, and PTGS2 proteins and the PI3K-Akt and TNF signaling pathways. The study demonstrated that quercetin, luteolin, kaempferol, and beta-sitosterol in PV may play a major role in the treatment of SAT, which was associated with the regulation of inflammation and apoptosis, by targeting the PI3K-Akt and TNF signaling pathways.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ping Yang ◽  
Haifeng He ◽  
Shangfu Xu ◽  
Ping Liu ◽  
Xinyu Bai

Objective. Hua-Feng-Dan (HFD) is a Chinese medicine for stroke. This study is to predict and verify potential molecular targets and pathways of HFD against stroke using network pharmacology. Methods. The TCMSP database and TCMID were used to search for the active ingredients of HFD, and GeneCards and DrugBank databases were used to search for stroke-related target genes to construct the “component-target-disease” by Cytoscape 3.7.1, which was further filtered by MCODE to build a core network. The STRING database was used to obtain interrelationships by topology and to construct a protein-protein interaction network. GO and KEGG were carried out through DAVID Bioinformatics. Autodock 4.2 was used for molecular docking. BaseSpace was used to correlate target genes with the GEO database. Results. Based on OB ≥ 30% and DL ≥ 0.18, 42 active ingredients were extracted from HFD, and 107 associated targets were obtained. PPI network and Cytoscape analysis identified 22 key targets. GO analysis suggested 51 cellular biological processes, and KEGG suggested that 60 pathways were related to the antistroke mechanism of HFD, with p53, PI3K-Akt, and apoptosis signaling pathways being most important for HFD effects. Molecular docking verified interactions between the core target (CASP8, CASP9, MDM2, CYCS, RELA, and CCND1) and the active ingredients (beta-sitosterol, luteolin, baicalein, and wogonin). The identified gene targets were highly correlated with the GEO biosets, and the stroke-protection effects of Xuesaitong in the database were verified by identified targets. Conclusion. HFD could regulate the symptoms of stroke through signaling pathways with core targets. This work provided a bioinformatic method to clarify the antistroke mechanism of HFD, and the identified core targets could be valuable to evaluate the antistroke effects of traditional Chinese medicines.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Sha Di ◽  
Lin Han ◽  
Qing Wang ◽  
Xinkui Liu ◽  
Yingying Yang ◽  
...  

Shen-Qi-Di-Huang decoction (SQDHD), a well-known herbal formula from China, has been widely used in the treatment of diabetic nephropathy (DN). However, the pharmacological mechanisms of SQDHD have not been entirely elucidated. At first, we conducted a comprehensive literature search to identify the active constituents of SQDHD, determined their corresponding targets, and obtained known DN targets from several databases. A protein-protein interaction network was then built to explore the complex relations between SQDHD targets and those known to treat DN. Following the topological feature screening of each node in the network, 400 major targets of SQDHD were obtained. The pathway enrichment analysis results acquired from DAVID showed that the significant bioprocesses and pathways include oxidative stress, response to glucose, regulation of blood pressure, regulation of cell proliferation, cytokine-mediated signaling pathway, and the apoptotic signaling pathway. More interestingly, five key targets of SQDHD, named AKT1, AR, CTNNB1, EGFR, and ESR1, were significant in the regulation of the above bioprocesses and pathways. This study partially verified and predicted the pharmacological and molecular mechanisms of SQDHD on DN from a holistic perspective. This has laid the foundation for further experimental research and has expanded the rational application of SQDHD in clinical practice.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Li Han ◽  
Ying Han

Background. Herba Sarcandrae is used in the clinical practice of traditional Chinese medicine to deal with gastric cancer. However, there are few studies on its precise mechanism. Method. In this study, a network pharmacological approach was utilized to construct a molecular/target/pathway molecular regulatory network for the anti-gastric-cancer effect of Herba Sarcandrae. The active components of Herba Sarcandrae and their potential mechanisms were explored. Chemical components of the Herba Sarcandrae were identified through a database, and they were evaluated and screened based on oral bioavailability and drug similarity. Results. Genes related to gastric cancer were found in the Gene Expression Omnibus (GEO) database, and gene targets related to anti-gastric-cancer were chosen by comparison. Using annotation, visualization, and a comprehensive discovery database, the function and related pathways of target genes were analyzed and screened. Cytoscape software was utilized to construct a component/target/pathway network for the antitumor effect of Herba Sarcandrae. Finally, 6 drug ingredients and 29 target genes related to gastric cancer were detected. IL-17 signaling pathway, NF-kappa B signaling pathway, and other signaling pathways were significantly enriched. Many signaling pathways that directly act on tumors and indirect pathways inhibit the development of gastric cancer. Conclusion. This study provides a scientific basis for further elucidating the mechanism of the anti-gastric-cancer effect of Herba Sarcandrae.


2021 ◽  
Author(s):  
Zhiqiang Chen ◽  
Tong Lin ◽  
Xiaozhong Liao ◽  
Zeyun Li ◽  
Ruiting Lin ◽  
...  

Abstract Background: Cholangiocarcinoma refers to an epithelial cell malignancy with poor prognosis. Yinchenhao decoction (YCHD) showed positive effects on cancers, and associations between YCHD and cholangiocarcinoma remain unclear. This study aimed to screen out the effective active components of Yinchenhao decoction (YCHD) using network pharmacology, estimate their potential targets, screen out the pathways, as well as delve into the potential mechanisms on treating cholangiocarcinoma. Methods: By the traditional Chinese medicine system pharmacology database and analysis platform (TCMSP) as well as literature review, the major active components and their corresponding targets were estimated and screened out. Using the software Cytoscape 3.6.0, a visual network was established using the active components of YCHD and the targets of cholangiocarcinoma. Based on STRING online database, the protein interaction network of vital targets was built and analyzed. With the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server, the gene ontology (GO) biological processes and the Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways of the targets enrichment were performed. The AutoDock Vina was used to perform molecular docking and calculate the binding affinity. The PyMOL software was utilized to visualize the docking results of active compounds and protein targets. In vivo experiment, the IC50 values and apoptosis rate in PI-A cells were detected using CCK-8 kit and Cell Cycle Detection Kit. The predicted targets were verified by the real-time PCR and western blot methods. Results: 32 effective active components with anti-tumor effects of YCHD were sifted in total, covering 209 targets, 96 of which were associated with cancer. Quercetin, kaempferol, beta-sitosterol, isorhamnetin, and stigmasterol were identified as the vital active compounds, and AKT1, IL6, MAPK1, TP53 as well as VEGFA were considered as the major targets. The molecular docking revealed that these active compounds and targets showed good binding interactions. These 96 putative targets exerted therapeutic effects on cancer by regulating signaling pathways (e.g., hepatitis B, the MAPK signaling pathway, the PI3K-Akt signaling pathway, and MicroRNAs in cancer). Our in vivo experimental results confirmed that YCHD showed therapeutic effects on cholangiocarcinoma by decreasing IC50 values, down-regulating apoptosis rate of cholangiocarcinoma cells, and lowering protein expressions. Conclusion:As predicted by network pharmacology strategy and validated by the experimental results, YCHD exerts anti-tumor effectsthrough multiple components, targets, and pathways, thereby providing novel ideas and clues for the development of preparations and the treatment of cholangiocarcinoma.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1166
Author(s):  
Man Chu ◽  
Miranda Sin-Man Tsang ◽  
Ru He ◽  
Christopher Wai-Kei Lam ◽  
Zhi Bo Quan ◽  
...  

To examine the molecular targets and therapeutic mechanism of a clinically proven Chinese medicinal pentaherbs formula (PHF) in atopic dermatitis (AD), we analyzed the active compounds and core targets, performed network and molecular docking analysis, and investigated interacting pathways. Information on compounds in PHF was obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and target prediction was performed using the Drugbank database. AD-related genes were gathered using the GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. Network analysis was performed by Cytoscape software and protein-protein interaction was analyzed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). The Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources were applied for the enrichment analysis of the potential biological process and pathways associated with the intersection targets between PHF and AD. Autodock software was used to perform protein compound docking analysis. We identified 43 active compounds in PHF associated with 117 targets, and 57 active compounds associated with 107 targets that form the main pathways linked to oral and topical treatment of AD, respectively. Among them, quercetin, luteolin, and kaempferol are key chemicals targeting the core genes involved in the oral use of PHF against AD, while apigenin, ursolic acid, and rosmarinic acid could be used in topical treatment of PHF against AD. The compound–target–disease network constructed in the current study reveals close interactions between multiple components and multiple targets. Enrichment analysis further supports the biological processes and signaling pathways identified, indicating the involvement of IL-17 and tumor necrosis factor signaling pathways in the action of PHF on AD. Our data demonstrated the main compounds and potential pharmacological mechanisms of oral and topical application of PHF in AD.


2021 ◽  
Vol 7 (4) ◽  
pp. 765-775
Author(s):  
Junwei Wu ◽  
Mengting Qin ◽  
Hong Pan ◽  
Qi Pan ◽  
Shoufeng Wang ◽  
...  

Lung cancer (the 5-year survival rate is only about 16%) has a low survival rate, and more-effective drugs are urgently needed. Our team discovered that cortex Periplocae Radicis has obvious toxic effects on various cancer cells, including lung cancer cells. However, the mechanism is not clear. Therefore, we used the PubChem database to obtain periplogenin as the target of therapeutic drugs and the TCGA database to obtain differential genes of lung cancer. The results showed that MMP9, PPARG, BMP2, and TGFB2 were the core proteins of periplogenin acting on lung adenocarcinoma (LUAD), and MMP9, angiotensin-converting enzyme (ACE), BMP2, PPARG, MMP13, MMP3, and TGFB2 were the core proteins of periplogenin acting on lung squamous cell carcinoma (LUCS). Through gene ontology (GO) enrichment analysis, it was found that periplogenin mainly acted on LUAD via fatty acid binding, metallopeptidase activity, and monocarboxylic acid binding, and mainly acted on lung squamous carcinoma (LUSC) via endopeptidase activity, metallopeptidase activity, and serine-type peptidase activity. Kyoto Encyclopedia of Genes, and Genomes (KEGG) analysis revealed that the IL-17 signaling pathway, fluid shear stress, atherosclerosis, hepatocellular carcinoma, and so on, were the main signaling pathways of periplogenin acting on LUSC, whereas glycolysis/gluconeogenesis, and the peroxisome proliferator-activated receptor (PPAR) signaling pathway were major signaling pathways of periplogenin acting on LUAD. This shows that treatment of lung cancer can be achieved through multi-targeted, and multi-channel periplogenin activity.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Shiying Zhang ◽  
Zhiying Yuan ◽  
Huaying Wu ◽  
Weiqing Li ◽  
Liang Li ◽  
...  

Objective. To explore the effects of the Hedysarum multijugum Maxim.-Radix Salviae compound (Huangqi-Danshen Compound (HDC)) on oxidative capacity and cardiomyocyte apoptosis in rats with diabetic cardiomyopathy by a network pharmacology-based strategy. Methods. Traditional Chinese Medicine (TCM)@Taiwan, TCM Systems Pharmacology Database and Analysis Platform (TCMSP), TCM Integrated Database (TCMID), and High-Performance Liquid Chromatography (HPLC) technology were used to obtain and screen HDC’s active components, and the PharmMapper database was used to predict HDC human target protein targets. The DCM genes were collected from the GeneCards and OMIM databases, and the network was constructed and analyzed by Cytoscape 3.7.1 and the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Finally, HDC was used to intervene in diabetic cardiomyopathy (DCM) model rats, and important biological processes and signaling pathways were verified using techniques such as immunohistochemistry. Results. A total of 176 of HDC’s active components and 442 potential targets were obtained. The results of network analysis show that HDC can regulate DCM-related biological processes (such as negative regulation of the apoptotic process, response to hypoxia, the steroid hormone-mediated signaling pathway, cellular iron ion homeostasis, and positive regulation of phosphatidylinositol 3-kinase signaling) and signaling pathways (such as the HIF-1 signaling pathway, the estrogen signaling pathway, insulin resistance, the PPAR signaling pathway, the VEGF signaling pathway, and the PI3K-Akt signaling pathway). Animal experiments show that HDC can reduce fasting plasma glucose (FPG), HbA1c, and malondialdehyde (MDA) and increase superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) ( P < 0.05 ). The results of immunohistochemistry showed that HDC can regulate the protein expression of apoptosis-related signaling pathways in DCM rats ( P < 0.05 ). Conclusion. It was initially revealed that HDC improves DCM through its antiapoptotic and anti-inflammatory effects. HDC may play a therapeutic role by improving cardiomyocyte apoptosis in DCM rats.


Sign in / Sign up

Export Citation Format

Share Document