scholarly journals Preparation and Characterization of NbxOy Thin Films: A Review

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1246
Author(s):  
Nwanna Charles Emeka ◽  
Patrick Ehi Imoisili ◽  
Tien-Chien Jen

Niobium oxides (NbO, NbO2, Nb2O5), being a versatile material has achieved tremendous popularity to be used in a number of applications because of its outstanding electrical, mechanical, chemical, and magnetic properties. NbxOy films possess a direct band gap within the ranges of 3.2–4.0 eV, with these films having utility in different applications which include; optical systems, stainless steel, ceramics, solar cells, electrochromic devices, capacitor dielectrics, catalysts, sensors, and architectural requirements. With the purpose of fulfilling the requirements of a vast variety of the named applications, thin films having comprehensive properties span described by film composition, morphology, structural properties, and thickness are needed. The theory, alongside the research status of the different fabrication techniques of NbxOy thin films are reported in this work. The impact of fabrication procedures on the thin film characteristics which include; film thickness, surface quality, optical properties, interface properties, film growth, and crystal phase is explored with emphases on the distinct deposition process applied, are also described and discussed.

Author(s):  
J.B. Posthill ◽  
R.P. Burns ◽  
R.A. Rudder ◽  
Y.H. Lee ◽  
R.J. Markunas ◽  
...  

Because of diamond’s wide band gap, high thermal conductivity, high breakdown voltage and high radiation resistance, there is a growing interest in developing diamond-based devices for several new and demanding electronic applications. In developing this technology, there are several new challenges to be overcome. Much of our effort has been directed at developing a diamond deposition process that will permit controlled, epitaxial growth. Also, because of cost and size considerations, it is mandatory that a non-native substrate be developed for heteroepitaxial nucleation and growth of diamond thin films. To this end, we are currently investigating the use of Ni single crystals on which different types of epitaxial metals are grown by molecular beam epitaxy (MBE) for lattice matching to diamond as well as surface chemistry modification. This contribution reports briefly on our microscopic observations that are integral to these endeavors.


2007 ◽  
Vol 561-565 ◽  
pp. 1161-1164
Author(s):  
Xiao Na Li ◽  
Bing Hu ◽  
Chuang Dong ◽  
Xin Jiang

Fe/Si multi-layer films were fabricated on Si (100) substrates utilizing radio frequency magnetron sputtering system. Si/β-FeSi2 structure was found in the films after the deposition. Structural characterization of Fe-silicide sample was performed by transmission electron microscopy, to explore the dependence of the microstructure of β-FeSi2 film on the preparation parameters. It was found that β-FeSi2 particles were formed after the deposition without annealing, whose size is less than 20nm ,with a direct band-gap of 0.94eV in room temperature. After annealing at 850°C, particles grow lager, however the stability of thin films was still good.


2014 ◽  
Vol 986-987 ◽  
pp. 47-50
Author(s):  
Jin Shang ◽  
Huan Ke ◽  
Shu Wang Duo ◽  
Ting Zhi Liu ◽  
Hao Zhang

ZnS thin films were deposited at three different radios of V(NH3·H2O)/V(N2H4) on glass substrates by chemical bath deposition (CBD) method without stirring the deposition bath during the deposition process. The structural and optical properties were analyzed by X-ray diffraction (XRD) and UV-VIS spectrophotometer. The results showed that ZnS thin film deposited at the radio of V(NH3·H2O)/V(N2H4)=15:15 is higher than that of the other two different solutions. With the radio of V(NH3·H2O)/V(N2H4) decreasing from 15:5 to 15:15, homogenous precipitation of Zn (OH)2easily forms in the bath, but ZnS precipitation first become suppressed and then easily forms in solution. It means that the concentration of OH-ion increases with the volume of N2H4increasing, which accelerates the formation of Zn (OH)2. However, when the volume of N2H4increases to 15mL, relatively high concentration of OH-ion not only accelerates the formation of Zn (OH)2, but also be used to the hydrolysis of thiourea. The average transmissions of all the ZnS films from three different solutions (V(NH3·H2O)/V(N2H4)=15:5, 15:10 and 15:15) are greater than 90% for wavelength values in visible region. The direct band gaps range from 3.80 to 4.0eV. The ZnS film deposited for 2.5h with the radio of V(NH3·H2O)/V(N2H4)=15:15 has the cubic structure only after single deposition.


1986 ◽  
Vol 77 ◽  
Author(s):  
A. F. Jankowski ◽  
R. O. Adams ◽  
L. Williams

ABSTRACTThe binary alloy series of Ti-X metallic, composition modulated layered structures has been fabricated via magnetron sputtering. The Ti-X systems (where X is Ta, Mo, or V) explored are exemplary of solid solution systems, such as the supermodulus systems of Cu-Ni, Ag-Pd, Au-Ni, and Cu-Pd (which all feature fee crystalline compatibility). In the present case, the beta-phase of Ti sought in these Ti-X systems suggests bec crystalline compatibility, with interlayer misfit strains not exceeding 10%.The Ti-X series examined, matches elements of high and low atomic number. (Z of Ti, V, Mo, and Ta are 22, 23, 42, and 73, respectively.) Difficulties which arise in a conventional tungsten basket - alumina crucible physical vapor deposition process, i.e. obtaining thr vaporization temperatures for Ti, V, Mo and Ta of 1235, 1332, 1822, and 2240 °C at 130 mPa, respectively, are overcome by magnetron sputtering. Thin films produced by alternate deposition of Ti with V, Mo, or Ta, are desired with individually unique, regular repeating layer thicknesses which range from 1.5 to 15 nm.An initial characterization of the Ti-X composition modulated alloys has been conducted using X-ray diffraction. The pole figure constructions of the various composition wavelengths give a qualitative look at the strain accomodation within the thin films and possible manifestations in mechanical properties.


2014 ◽  
Vol 1024 ◽  
pp. 64-67 ◽  
Author(s):  
Nur Syahirah Kamarozaman ◽  
Muhamad Uzair Shamsul ◽  
Sukreen Hana Herman ◽  
Wan Fazlida Hanim Abdullah

The paper presents the memristive behavior of sputtered titania thin films on ITO substrate. Titania thin films were deposited by RF magnetron sputtering method while varying the oxygen flow rate of (O2/ (O2 + Ar) x100 = 10, 20 and 30 %) during deposition process. The effect of oxygen flow rate to the structural properties was studied including the physical thickness, and also the effect towards switching behavior. It was found that sample deposited at 20 % oxygen flow rate gave better memristive behavior compared to other samples, with larger ROFF/RON ratio of 9. The characterization of memristive behavior includes the effect of electroforming process and successive of I-V measurements are discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2635
Author(s):  
Max Powers ◽  
James A. Stewart ◽  
Rémi Dingreville ◽  
Benjamin K. Derby ◽  
Amit Misra

Co-deposited, immiscible alloy systems form hierarchical microstructures under specific deposition conditions that accentuate the difference in constituent element mobility. The mechanism leading to the formation of these unique hierarchical morphologies during the deposition process is difficult to identify, since the characterization of these microstructures is typically carried out post-deposition. We employ phase-field modeling to study the evolution of microstructures during deposition combined with microscopy characterization of experimentally deposited thin films to reveal the origin of the formation mechanism of hierarchical morphologies in co-deposited, immiscible alloy thin films. Our results trace this back to the significant influence of a local compositional driving force that occurs near the surface of the growing thin film. We show that local variations in the concentration of the vapor phase near the surface, resulting in nuclei (i.e., a cluster of atoms) on the film’s surface with an inhomogeneous composition, can trigger the simultaneous evolution of multiple concentration modulations across multiple length scales, leading to hierarchical morphologies. We show that locally, the concentration must be above a certain threshold value in order to generate distinct hierarchical morphologies in a single domain.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
D. Sciacqua ◽  
C. Pattyn ◽  
A. Jagodar ◽  
E. von Wahl ◽  
T. Lecas ◽  
...  

Abstract The plasma based synthesis of thin films is frequently used to deposit ultra-thin and pinhole-free films on a wide class of different substrates. However, the synthesis of thin films by means of low temperature plasmas is rather complex due to the great number of different species (neutrals, radicals, ions) that are potentially involved in the deposition process. This contribution deals with polymerization processes in a capacitively coupled discharge operated in a mixture of argon and aniline where the latter is a monomer, which is used for the production of plasma-polymerized polyaniline, a material belonging to the class of conductive polymers. This work will present a particular experimental approach that allows to (partially) distinguish the contribution of different species to the film growth and thus to control to a certain extent the properties of the resulting material. The control of the species flux emerging from the plasma and contributing to the film growth also sheds new light on the deposition process, in particular with respect to the role of the ion component. The analysis of the produced films has been performed by means of Fourier Transform Infrared spectroscopy (FTIR) and Near Edge X-ray Absorption Fine Structure spectroscopy (NEXAFS).


Author(s):  
Aus A. Najim ◽  
Kadhim R. Gbashi ◽  
Ammar T. Salih

In the present work, nanocrystalline hausmannite Mn3O4:Ba thin films have been deposited on glass substrates by chemical spray pyrolysis (CSP). Then, we investigated the impact of Ba doping concentrations on the structural, morphological and optical properties. The structural characteristics were investigated by X-ray diffraction technique and clearly show the films have a spinel Mn3O4 polycrystalline structure, the degree of crystallinity was improved by increasing Ba concentrations in Mn3O4 matrix with crystallite size range of 15–33[Formula: see text]nm. The lattice parameters, the unit cell volume and the (Mn-O) bond length of tetrahedral and octahedral sites, were varied by increasing Ba concentrations. SEM micrographs show that the films are homogeneous with nanoparticles dispersed on the surface with sizes range 30–132[Formula: see text]nm. The optical properties were estimated by UV-Vis-NIR spectrophotometer and exhibited that the optical transmittance and band gap were improved by increasing Ba doping concentration. Empirical equations were suggested to estimate some correlated variables with excellent agreement with the experimental data. The optimum condition was recorded in films doped with 3% of Ba where a better crystallinity, a preferable surface morphology and outstanding optical properties have been achieved.


2020 ◽  
Vol 12 (1) ◽  
pp. 116-119
Author(s):  
Nitesh Shukla ◽  
Pravin Kumar Singh ◽  
H. P. Pathak ◽  
D. K. Dwivedi

Thin films of Se90Cd10–xSbx (2 ≤ x ≤ 8) of thickness 0.4 microns were prepared on ultra-clean glass substrate by thermal evaporation technique. The vacuum level was 10–6 torr. This paper intends to investigate the impact of Sb concentration on the optical characterization. XRD measurement has been done to investigate the Structural characterization of the prepared thin films. XRD result indicates the prepared thin have amorphous nature. To analyze the optical characterization of the thin films the absorption spectra were recorded over 400–1100 nm wavelength range. In the present study the optical absorption follows direct allowed transition. An increase in photon energy causes an increase in absorption coefficient while extinction coefficient has been found to increase with an increase in frequency of the photons i.e., deceases with increase of wavelength. Optical bandgap (Eg) of thin films have been studied and an increase in it has been recorded with increasing Sb concentration.


Sign in / Sign up

Export Citation Format

Share Document