Electrodeposition of a Ni–P–TiO2/Ti3C2Tx Coating with in situ Grown Nanoparticles TiO2 on Ti3C2Tx Sheets
Protective coatings have received considerable attention for the surface treatment of devices. Herein, in situ grown nanoparticles, TiO2 on Ti3C2Tx sheets (TiO2/Ti3C2Tx), are prepared by a simple hydrothermal oxidation method possessing the layer structure, which is applied to prepare protective coatings. The Ni–P–TiO2/Ti3C2Tx coating is prepared by electroplating technology, revealing more excellent properties than those of the Ni–P coating. Compared with the Ni–P coating, even though the Ni–P–TiO2/Ti3C2Tx coating holds the rough surface, the wettability is changed from hydrophilic to hydrophobic, owing to the gathering existence of TiO2/Ti3C2Tx on the surface and coarse surface texture. In addition, the participation of TiO2/Ti3C2Tx in the Ni–P coating can improve the capacity of corrosion prevention and decrease the corrosion rate. According to the results of hardness and wear tests, microhardness of the Ni–P–TiO2/Ti3C2Tx coating is approximately 1350 kg mm–2 and the coefficient of friction (COF) of Ni–P–TiO2/Ti3C2Tx coatings is about 0.40, which is much lower than that of Ni–P coatings. Thus, the Ni–P–TiO2/Ti3C2Tx coating can be a promising material to protect the surface of equipment.