scholarly journals The Combination of Adaptive Convolutional Neural Network and Bag of Visual Words in Automatic Diagnosis of Third Molar Complications on Dental X-Ray Images

Diagnostics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 209 ◽  
Author(s):  
Vo Truong Nhu Ngoc ◽  
Agwu Chinedu Agwu ◽  
Le Hoang Son ◽  
Tran Manh Tuan ◽  
Cu Nguyen Giap ◽  
...  

In dental diagnosis, recognizing tooth complications quickly from radiology (e.g., X-rays) takes highly experienced medical professionals. By using object detection models and algorithms, this work is much easier and needs less experienced medical practitioners to clear their doubts while diagnosing a medical case. In this paper, we propose a dental defect recognition model by the integration of Adaptive Convolution Neural Network and Bag of Visual Word (BoVW). In this model, BoVW is used to save the features extracted from images. After that, a designed Convolutional Neural Network (CNN) model is used to make quality prediction. To evaluate the proposed model, we collected a dataset of radiography images of 447 patients in Hanoi Medical Hospital, Vietnam, with third molar complications. The results of the model suggest accuracy of 84% ± 4%. This accuracy is comparable to that of experienced dentists and radiologists.

2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.


Author(s):  
Dipayan Das ◽  
KC Santosh ◽  
Umapada Pal

Abstract Since December 2019, the Coronavirus Disease (COVID-19) pandemic has caused world-wide turmoil in less than a couple of months, and the infection, caused by SARS-CoV-2, is spreading at an unprecedented rate. AI-driven tools are used to identify Coronavirus outbreaks as well as forecast their nature of spread, where imaging techniques are widely used, such as CT scans and chest X-rays (CXRs). In this paper, motivated by the fact that X-ray imaging systems are more prevalent and cheaper than CT scan systems, a deep learning-based Convolutional Neural Network (CNN) model, which we call Truncated Inception Net, is proposed to screen COVID-19 positive CXRs from other non-COVID and/or healthy cases. To validate our proposal, six different types of datasets were employed by taking the following CXRs: COVID-19 positive, Pneumonia positive, Tuberculosis positive, and healthy cases into account. The proposed model achieved an accuracy of 99.96% (AUC of 1.0) in classifying COVID- 19 positive cases from combined Pneumonia and healthy cases. Similarly, it achieved an accuracy of 99.92% (AUC of 0.99) in classifying COVID-19 positive cases from combined Pneumonia, Tuberculosis and healthy CXRs. To the best of our knowledge, as of now, the achieved results outperform the existing AI-driven tools for screening COVID-19 using CXRs.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012001
Author(s):  
J Ureta ◽  
A Shrestha

Abstract Tuberculosis(TB) is one of the top 10 causes of death worldwide, and drug-resistant TB is a major public health concern especially in resource-constrained countries. In such countries, molecular diagnosis of drug-resistant TB remains a challenge; and imaging tools such as X-rays, which are cheaply and widely available, can be a valuable supplemental resource for early detection and screening. This study uses a specialized convolutional neural network to perform binary classification of chest X-ray images to classify drug-resistant and drug-sensitive TB. The models were trained and validated using the TBPortals dataset which contains 2,973 labeled X-ray images from TB patients. The classifiers were able to identify the presence or absence of drug-resistant Tuberculosis with an AUROC between 0.66–0.67, which is an improvement over previous attempts using deep learning networks.


Author(s):  
Ahmed Wasif Reza ◽  
Jannatul Ferdous Sorna ◽  
Md. Momtaz Uddin Rashel ◽  
Mir Moynuddin Ahmed Shibly

COVID-19 is a devastating pandemic in the history of humankind. It is a highly contagious flu that can spread from human to human. For being so contagious, detecting patients with it and isolating them has become the primary concern for healthcare professionals. However, identifying COVID-19 patients with a Polymerase chain reaction (PCR) test can sometimes be problematic and time-consuming. Therefore, detecting patients with this virus from X-ray chest images can be a perfect alternative to the de-facto standard PCR test. This article aims at providing such a decision support system that can detect COVID-19 patients with the help of X-ray images. To do that, a novel convolutional neural network (CNN) based architecture, namely ModCOVNN, has been introduced. To determine whether the proposed model works with good efficiency, two CNN-based architectures – VGG16 and VGG19 have been developed for the detection task. The experimental results of this study have proved that the proposed architecture has outperformed the other two models with 98.08% accuracy, 98.14% precision, and 98.4% recall. This result indicates that proper detection of COVID-19 patients with the help of X-ray images of the chest is possible using machine learning methods with high accuracy. This type of data-driven system can help us to overcome the current appalling situation throughout the world.


2021 ◽  
Vol 8 (3) ◽  
pp. 533
Author(s):  
Budi Nugroho ◽  
Eva Yulia Puspaningrum

<p class="Abstrak">Saat ini banyak dikembangkan proses pendeteksian pneumonia berdasarkan citra paru-paru dari hasil foto rontgen (x-ray), sebagaimana juga dilakukan pada penelitian ini. Metode yang digunakan adalah <em>Convolutional Neural Network</em> (CNN) dengan arsitektur yang berbeda dengan sejumlah penelitian sebelumnya. Selain itu, penelitian ini juga memodifikasi model CNN dimana metode <em>Extreme Learning Machine</em> (ELM) digunakan pada bagian klasifikasi, yang kemudian disebut CNN-ELM. Dataset untuk uji coba menggunakan kumpulan citra paru-paru hasil foto rontgen pada Kaggle yang terdiri atas 1.583 citra normal dan 4.237 citra pneumonia. Citra asal pada dataset kaggle ini bervariasi, tetapi hampir semua diatas ukuran 1000x1000 piksel. Ukuran citra yang besar ini dapat membuat pemrosesan klasifikasi kurang efektif, sehingga mesin CNN biasanya memodifikasi ukuran citra menjadi lebih kecil. Pada penelitian ini, pengujian dilakukan dengan variasi ukuran citra input, untuk mengetahui pengaruhnya terhadap kinerja mesin pengklasifikasi. Hasil uji coba menunjukkan bahwa ukuran citra input berpengaruh besar terhadap kinerja klasifikasi pneumonia, baik klasifikasi yang menggunakan metode CNN maupun CNN-ELM. Pada ukuran citra input 200x200, metode CNN dan CNN-ELM menunjukkan kinerja paling tinggi. Jika kinerja kedua metode itu dibandingkan, maka Metode CNN-ELM menunjukkan kinerja yang lebih baik daripada CNN pada semua skenario uji coba. Pada kondisi kinerja paling tinggi, selisih akurasi antara metode CNN-ELM dan CNN mencapai 8,81% dan selisih F1 Score mencapai 0,0729. Hasil penelitian ini memberikan informasi penting bahwa ukuran citra input memiliki pengaruh besar terhadap kinerja klasifikasi pneumonia, baik klasifikasi menggunakan metode CNN maupun CNN-ELM. Selain itu, pada semua ukuran citra input yang digunakan untuk proses klasifikasi, metode CNN-ELM menunjukkan kinerja yang lebih baik daripada metode CNN.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstract"><em>This research developed a pneumonia detection machine based on the lungs' images from X-rays (x-rays). The method used is the Convolutional Neural Network (CNN) with a different architecture from some previous research. Also, the CNN model is modified, where the classification process uses the Extreme Learning Machine (ELM), which is then called the CNN-ELM method. The empirical experiments dataset used a collection of lung x-ray images on Kaggle consisting of 1,583 normal images and 4,237 pneumonia images. The original image's size on the Kaggle dataset varies, but almost all of the images are more than 1000x1000 pixels. For classification processing to be more effective, CNN machines usually use reduced-size images. In this research, experiments were carried out with various input image sizes to determine the effect on the classifier's performance. The experimental results show that the input images' size has a significant effect on the classification performance of pneumonia, both the CNN and CNN-ELM classification methods. At the 200x200 input image size, the CNN and CNN-ELM methods showed the highest performance. If the two methods' performance is compared, then the CNN-ELM Method shows better performance than CNN in all test scenarios. The difference in accuracy between the CNN-ELM and CNN methods reaches 8.81% at the highest performance conditions, and the difference in F1-Score reaches 0.0729. This research provides important information that the size of the input image has a major influence on the classification performance of pneumonia, both classification using the CNN and CNN-ELM methods. Also, on all input image sizes used for the classification process, the CNN-ELM method shows better performance than the CNN method.</em></p>


Technologies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 98
Author(s):  
Gabriel Ackall ◽  
Mohammed Elmzoudi ◽  
Richard Yuan ◽  
Cuixian Chen

COVID-19 has spread rapidly across the world since late 2019. As of December, 2021, there are over 250 million documented COVID-19 cases and over 5 million deaths worldwide, which have caused businesses, schools, and government operations to shut down. The most common method of detecting COVID-19 is the RT-PCR swab test, which suffers from a high false-negative rate and a very slow turnaround for results, often up to two weeks. Because of this, specialists often manually review X-ray images of the lungs to detect the presence of COVID-19 with up to 97% accuracy. Neural network algorithms greatly accelerate this review process, analyzing hundreds of X-rays in seconds. Using the Cohen COVID-19 X-ray Database and the NIH ChestX-ray8 Database, we trained and constructed the xRGM-NET convolutional neural network (CNN) to detect COVID-19 in X-ray scans of the lungs. To further aid medical professionals in the manual review of X-rays, we implemented the CNN activation mapping technique Score-CAM, which generates a heat map over an X-ray to illustrate which areas in the scan are most influential over the ultimate diagnosis. xRGM-NET achieved an overall classification accuracy of 97% with a sensitivity of 94% and specificity of 97%. Lightweight models like xRGM-NET can serve to improve the efficiency and accuracy of COVID-19 detection in developing countries or rural areas. In this paper, we report on our model and methods that were developed as part of a STEM enrichment summer program for high school students. We hope that our model and methods will allow other researchers to create lightweight and accurate models as more COVID-19 X-ray scans become available.


Author(s):  
V. N. Manjunath Aradhya ◽  
Mufti Mahmud ◽  
D. S. Guru ◽  
Basant Agarwal ◽  
M. Shamim Kaiser

AbstractCoronavirus disease (COVID-19) has infected over more than 28.3 million people around the globe and killed 913K people worldwide as on 11 September 2020. With this pandemic, to combat the spreading of COVID-19, effective testing methodologies and immediate medical treatments are much required. Chest X-rays are the widely available modalities for immediate diagnosis of COVID-19. Hence, automation of detection of COVID-19 from chest X-ray images using machine learning approaches is of greater demand. A model for detecting COVID-19 from chest X-ray images is proposed in this paper. A novel concept of cluster-based one-shot learning is introduced in this work. The introduced concept has an advantage of learning from a few samples against learning from many samples in case of deep leaning architectures. The proposed model is a multi-class classification model as it classifies images of four classes, viz., pneumonia bacterial, pneumonia virus, normal, and COVID-19. The proposed model is based on ensemble of Generalized Regression Neural Network (GRNN) and Probabilistic Neural Network (PNN) classifiers at decision level. The effectiveness of the proposed model has been demonstrated through extensive experimentation on a publicly available dataset consisting of 306 images. The proposed cluster-based one-shot learning has been found to be more effective on GRNN and PNN ensembled model to distinguish COVID-19 images from that of the other three classes. It has also been experimentally observed that the model has a superior performance over contemporary deep learning architectures. The concept of one-shot cluster-based learning is being first of its kind in literature, expected to open up several new dimensions in the field of machine learning which require further researching for various applications.


2020 ◽  
Vol 10 (9) ◽  
pp. 3233 ◽  
Author(s):  
Tawsifur Rahman ◽  
Muhammad E. H. Chowdhury ◽  
Amith Khandakar ◽  
Khandaker R. Islam ◽  
Khandaker F. Islam ◽  
...  

Pneumonia is a life-threatening disease, which occurs in the lungs caused by either bacterial or viral infection. It can be life-endangering if not acted upon at the right time and thus the early diagnosis of pneumonia is vital. The paper aims to automatically detect bacterial and viral pneumonia using digital x-ray images. It provides a detailed report on advances in accurate detection of pneumonia and then presents the methodology adopted by the authors. Four different pre-trained deep Convolutional Neural Network (CNN): AlexNet, ResNet18, DenseNet201, and SqueezeNet were used for transfer learning. A total of 5247 chest X-ray images consisting of bacterial, viral, and normal chest x-rays images were preprocessed and trained for the transfer learning-based classification task. In this study, the authors have reported three schemes of classifications: normal vs. pneumonia, bacterial vs. viral pneumonia, and normal, bacterial, and viral pneumonia. The classification accuracy of normal and pneumonia images, bacterial and viral pneumonia images, and normal, bacterial, and viral pneumonia were 98%, 95%, and 93.3%, respectively. This is the highest accuracy, in any scheme, of the accuracies reported in the literature. Therefore, the proposed study can be useful in more quickly diagnosing pneumonia by the radiologist and can help in the fast airport screening of pneumonia patients.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4961
Author(s):  
Christoph Wallner ◽  
Mansoor Alam ◽  
Marius Drysch ◽  
Johannes Maximilian Wagner ◽  
Alexander Sogorski ◽  
...  

Introduction: soft tissue sarcomas are a subset of malignant tumors that are relatively rare and make up 1% of all malignant tumors in adulthood. Due to the rarity of these tumors, there are significant differences in quality in the diagnosis and treatment of these tumors. One paramount aspect is the diagnosis of hematogenous metastases in the lungs. Guidelines recommend routine lung imaging by means of X-rays. With the ever advancing AI-based diagnostic support, there has so far been no implementation for sarcomas. The aim of the study was to utilize AI to obtain analyzes regarding metastasis on lung X-rays in the most possible sensitive and specific manner in sarcoma patients. Methods: a Python script was created and trained using a set of lung X-rays with sarcoma metastases from a high-volume German-speaking sarcoma center. 26 patients with lung metastasis were included. For all patients chest X-ray with corresponding lung CT scans, and histological biopsies were available. The number of trainable images were expanded to 600. In order to evaluate the biological sensitivity and specificity, the script was tested on lung X-rays with a lung CT as control. Results: in this study we present a new type of convolutional neural network-based system with a precision of 71.2%, specificity of 90.5%, sensitivity of 94%, recall of 94% and accuracy of 91.2%. A good detection of even small findings was determined. Discussion: the created script establishes the option to check lung X-rays for metastases at a safe level, especially given this rare tumor entity.


Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1028
Author(s):  
Yung-Chun Liu ◽  
Yung-Chieh Lin ◽  
Pei-Yin Tsai ◽  
Osuke Iwata ◽  
Chuew-Chuen Chuang ◽  
...  

Measuring bone mineral density (BMD) is important for surveying osteopenia in premature infants. However, the clinical availability of dual-energy X-ray absorptiometry (DEXA) for standard BMD measurement is very limited, and it is not a practical technique for critically premature infants. Developing alternative approaches for DEXA might improve clinical care for bone health. This study aimed to measure the BMD of premature infants via routine chest X-rays in the intensive care unit. A convolutional neural network (CNN) for humeral segmentation and quantification of BMD with calibration phantoms (QRM-DEXA) and soft tissue correction were developed. There were 210 X-rays of premature infants evaluated by this system, with an average Dice similarity coefficient value of 97.81% for humeral segmentation. The estimated humerus BMDs (g/cm3; mean ± standard) were 0.32 ± 0.06, 0.37 ± 0.06, and 0.32 ± 0.09, respectively, for the upper, middle, and bottom parts of the left humerus for the enrolled infants. To our knowledge, this is the first pilot study to apply a CNN model to humerus segmentation and to measure BMD in preterm infants. These preliminary results may accelerate the progress of BMD research in critical medicine and assist with nutritional care in premature infants.


Sign in / Sign up

Export Citation Format

Share Document