scholarly journals XGB+FM for Severe Convection Forecast and Factor Selection

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 321
Author(s):  
Zhiying Lu ◽  
Xudong Ding ◽  
Xin Li ◽  
Haopeng Wu ◽  
Xiaolei Sun

In the field of meteorology, radiosonde data and observation data are critical for analyzing regional meteorological characteristics. Because of the high false alarm rate, severe convection forecasting is still challenging. In addition, the existing methods are difficult to use to capture the interaction of meteorological factors at the same time. In this research, a cascade of extreme gradient boosting (XGBoost) for feature transformation and a factorization machine (FM) for second-order feature interaction to capture the nonlinear interaction—XGB+FM—is proposed. An attention-based bidirectional long short-term memory (Att-Bi-LSTM) network is proposed to impute the missing data of meteorological observation stations. The problem of class imbalance is resolved by the support vector machines–synthetic minority oversampling technique (SVM-SMOTE), in which two oversampling strategies based on the support vector discrimination mechanism are proposed. It is proven that the method is effective, and the threat score (TS) is 7.27~14.28% higher than other methods. Moreover, we propose the meteorological factor selection method based on XGB+FM and improve the forecast accuracy, which is one of our contributions, as well as the forecast system.

2020 ◽  
Vol 11 ◽  
Author(s):  
Liangxu Xie ◽  
Lei Xu ◽  
Ren Kong ◽  
Shan Chang ◽  
Xiaojun Xu

The accurate predicting of physical properties and bioactivity of drug molecules in deep learning depends on how molecules are represented. Many types of molecular descriptors have been developed for quantitative structure-activity/property relationships quantitative structure-activity relationships (QSPR). However, each molecular descriptor is optimized for a specific application with encoding preference. Considering that standalone featurization methods may only cover parts of information of the chemical molecules, we proposed to build the conjoint fingerprint by combining two supplementary fingerprints. The impact of conjoint fingerprint and each standalone fingerprint on predicting performance was systematically evaluated in predicting the logarithm of the partition coefficient (logP) and binding affinity of protein-ligand by using machine learning/deep learning (ML/DL) methods, including random forest (RF), support vector regression (SVR), extreme gradient boosting (XGBoost), long short-term memory network (LSTM), and deep neural network (DNN). The results demonstrated that the conjoint fingerprint yielded improved predictive performance, even outperforming the consensus model using two standalone fingerprints among four out of five examined methods. Given that the conjoint fingerprint scheme shows easy extensibility and high applicability, we expect that the proposed conjoint scheme would create new opportunities for continuously improving predictive performance of deep learning by harnessing the complementarity of various types of fingerprints.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhao Yang ◽  
Yifan Wang ◽  
Jie Li ◽  
Liming Liu ◽  
Jiyang Ma ◽  
...  

This study presents a combined Long Short-Term Memory and Extreme Gradient Boosting (LSTM-XGBoost) method for flight arrival flow prediction at the airport. Correlation analysis is conducted between the historic arrival flow and input features. The XGBoost method is applied to identify the relative importance of various variables. The historic time-series data of airport arrival flow and selected features are taken as input variables, and the subsequent flight arrival flow is the output variable. The model parameters are sequentially updated based on the recently collected data and the new predicting results. It is found that the prediction accuracy is greatly improved by incorporating the meteorological features. The data analysis results indicate that the developed method can characterize well the dynamics of the airport arrival flow, thereby providing satisfactory prediction results. The prediction performance is compared with benchmark methods including backpropagation neural network, LSTM neural network, support vector machine, gradient boosting regression tree, and XGBoost. The results show that the proposed LSTM-XGBoost model outperforms baseline and state-of-the-art neural network models.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arturo Moncada-Torres ◽  
Marissa C. van Maaren ◽  
Mathijs P. Hendriks ◽  
Sabine Siesling ◽  
Gijs Geleijnse

AbstractCox Proportional Hazards (CPH) analysis is the standard for survival analysis in oncology. Recently, several machine learning (ML) techniques have been adapted for this task. Although they have shown to yield results at least as good as classical methods, they are often disregarded because of their lack of transparency and little to no explainability, which are key for their adoption in clinical settings. In this paper, we used data from the Netherlands Cancer Registry of 36,658 non-metastatic breast cancer patients to compare the performance of CPH with ML techniques (Random Survival Forests, Survival Support Vector Machines, and Extreme Gradient Boosting [XGB]) in predicting survival using the $$c$$ c -index. We demonstrated that in our dataset, ML-based models can perform at least as good as the classical CPH regression ($$c$$ c -index $$\sim \,0.63$$ ∼ 0.63 ), and in the case of XGB even better ($$c$$ c -index $$\sim 0.73$$ ∼ 0.73 ). Furthermore, we used Shapley Additive Explanation (SHAP) values to explain the models’ predictions. We concluded that the difference in performance can be attributed to XGB’s ability to model nonlinearities and complex interactions. We also investigated the impact of specific features on the models’ predictions as well as their corresponding insights. Lastly, we showed that explainable ML can generate explicit knowledge of how models make their predictions, which is crucial in increasing the trust and adoption of innovative ML techniques in oncology and healthcare overall.


Risks ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 202
Author(s):  
Ge Gao ◽  
Hongxin Wang ◽  
Pengbin Gao

In China, SMEs are facing financing difficulties, and commercial banks and financial institutions are the main financing channels for SMEs. Thus, a reasonable and efficient credit risk assessment system is important for credit markets. Based on traditional statistical methods and AI technology, a soft voting fusion model, which incorporates logistic regression, support vector machine (SVM), random forest (RF), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM), is constructed to improve the predictive accuracy of SMEs’ credit risk. To verify the feasibility and effectiveness of the proposed model, we use data from 123 SMEs nationwide that worked with a Chinese bank from 2016 to 2020, including financial information and default records. The results show that the accuracy of the soft voting fusion model is higher than that of a single machine learning (ML) algorithm, which provides a theoretical basis for the government to control credit risk in the future and offers important references for banks to make credit decisions.


Protein-Protein Interactions referred as PPIs perform significant role in biological functions like cell metabolism, immune response, signal transduction etc. Hot spots are small fractions of residues in interfaces and provide substantial binding energy in PPIs. Therefore, identification of hot spots is important to discover and analyze molecular medicines and diseases. The current strategy, alanine scanning isn't pertinent to enormous scope applications since the technique is very costly and tedious. The existing computational methods are poor in classification performance as well as accuracy in prediction. They are concerned with the topological structure and gene expression of hub proteins. The proposed system focuses on hot spots of hub proteins by eliminating redundant as well as highly correlated features using Pearson Correlation Coefficient and Support Vector Machine based feature elimination. Extreme Gradient boosting and LightGBM algorithms are used to ensemble a set of weak classifiers to form a strong classifier. The proposed system shows better accuracy than the existing computational methods. The model can also be used to predict accurate molecular inhibitors for specific PPIs


2021 ◽  
Author(s):  
Leila Zahedi ◽  
Farid Ghareh Mohammadi ◽  
M. Hadi Amini

Machine learning techniques lend themselves as promising decision-making and analytic tools in a wide range of applications. Different ML algorithms have various hyper-parameters. In order to tailor an ML model towards a specific application, a large number of hyper-parameters should be tuned. Tuning the hyper-parameters directly affects the performance (accuracy and run-time). However, for large-scale search spaces, efficiently exploring the ample number of combinations of hyper-parameters is computationally challenging. Existing automated hyper-parameter tuning techniques suffer from high time complexity. In this paper, we propose HyP-ABC, an automatic innovative hybrid hyper-parameter optimization algorithm using the modified artificial bee colony approach, to measure the classification accuracy of three ML algorithms, namely random forest, extreme gradient boosting, and support vector machine. Compared to the state-of-the-art techniques, HyP-ABC is more efficient and has a limited number of parameters to be tuned, making it worthwhile for real-world hyper-parameter optimization problems. We further compare our proposed HyP-ABC algorithm with state-of-the-art techniques. In order to ensure the robustness of the proposed method, the algorithm takes a wide range of feasible hyper-parameter values, and is tested using a real-world educational dataset.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hengrui Chen ◽  
Hong Chen ◽  
Ruiyu Zhou ◽  
Zhizhen Liu ◽  
Xiaoke Sun

The safety issue has become a critical obstacle that cannot be ignored in the marketization of autonomous vehicles (AVs). The objective of this study is to explore the mechanism of AV-involved crashes and analyze the impact of each feature on crash severity. We use the Apriori algorithm to explore the causal relationship between multiple factors to explore the mechanism of crashes. We use various machine learning models, including support vector machine (SVM), classification and regression tree (CART), and eXtreme Gradient Boosting (XGBoost), to analyze the crash severity. Besides, we apply the Shapley Additive Explanations (SHAP) to interpret the importance of each factor. The results indicate that XGBoost obtains the best result (recall = 75%; G-mean = 67.82%). Both XGBoost and Apriori algorithm effectively provided meaningful insights about AV-involved crash characteristics and their relationship. Among all these features, vehicle damage, weather conditions, accident location, and driving mode are the most critical features. We found that most rear-end crashes are conventional vehicles bumping into the rear of AVs. Drivers should be extremely cautious when driving in fog, snow, and insufficient light. Besides, drivers should be careful when driving near intersections, especially in the autonomous driving mode.


2021 ◽  
pp. 289-301
Author(s):  
B. Martín ◽  
J. González–Arias ◽  
J. A. Vicente–Vírseda

Our aim was to identify an optimal analytical approach for accurately predicting complex spatio–temporal patterns in animal species distribution. We compared the performance of eight modelling techniques (generalized additive models, regression trees, bagged CART, k–nearest neighbors, stochastic gradient boosting, support vector machines, neural network, and random forest –enhanced form of bootstrap. We also performed extreme gradient boosting –an enhanced form of radiant boosting– to predict spatial patterns in abundance of migrating Balearic shearwaters based on data gathered within eBird. Derived from open–source datasets, proxies of frontal systems and ocean productivity domains that have been previously used to characterize the oceanographic habitats of seabirds were quantified, and then used as predictors in the models. The random forest model showed the best performance according to the parameters assessed (RMSE value and R2). The correlation between observed and predicted abundance with this model was also considerably high. This study shows that the combination of machine learning techniques and massive data provided by open data sources is a useful approach for identifying the long–term spatial–temporal distribution of species at regional spatial scales.


2021 ◽  
Author(s):  
Seong Hwan Kim ◽  
Eun-Tae Jeon ◽  
Sungwook Yu ◽  
Kyungmi O ◽  
Chi Kyung Kim ◽  
...  

Abstract We aimed to develop a novel prediction model for early neurological deterioration (END) based on an interpretable machine learning (ML) algorithm for atrial fibrillation (AF)-related stroke and to evaluate the prediction accuracy and feature importance of ML models. Data from multi-center prospective stroke registries in South Korea were collected. After stepwise data preprocessing, we utilized logistic regression, support vector machine, extreme gradient boosting, light gradient boosting machine (LightGBM), and multilayer perceptron models. We used the Shapley additive explanations (SHAP) method to evaluate feature importance. Of the 3,623 stroke patients, the 2,363 who had arrived at the hospital within 24 hours of symptom onset and had available information regarding END were included. Of these, 318 (13.5%) had END. The LightGBM model showed the highest area under the receiver operating characteristic curve (0.778, 95% CI, 0.726 - 0.830). The feature importance analysis revealed that fasting glucose level and the National Institute of Health Stroke Scale score were the most influential factors. Among ML algorithms, the LightGBM model was particularly useful for predicting END, as it revealed new and diverse predictors. Additionally, the SHAP method can be adjusted to individualize the features’ effects on the predictive power of the model.


Sign in / Sign up

Export Citation Format

Share Document