scholarly journals Transformer-Based VCO for W-Band Automotive Radar Applications

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 531
Author(s):  
Andrea Cavarra ◽  
Giuseppe Papotto ◽  
Alessandro Parisi ◽  
Alessandro Finocchiaro ◽  
Claudio Nocera ◽  
...  

A transformer-based voltage-controlled oscillator for a W-band frequency-modulated continuous-wave (FMCW) automotive radar application is presented. The design challenges imposed by the millimeter-wave frequency operation were faced through a circuit and layout co-design approach, supported by extensive electromagnetic simulations and accurate analysis of both the start-up condition and the tank quality factor. The oscillator was implemented in a 28-nm fully depleted silicon-on-insulator (SOI) complementary metal–oxide–semiconductor (CMOS) technology. It provided a 37 GHz oscillation frequency with a variation of around 4 GHz, thus achieving a tuning range of 11%. Moreover, a 77 GHz output signal was also delivered, which was extracted as a second harmonic from the input-pair common-mode node. The circuit exhibited low phase noises, whose average performances were −97 dBc/Hz and −121 dBc/Hz at 1 MHz and 10 MHz offset frequencies, respectively. It delivered a 77-GHz output power of −10.5 dBm and dissipated 26 mW with a 1 V power supply. The silicon area occupation was 300 × 135 µm.

2018 ◽  
Vol 10 (7) ◽  
pp. 783-793 ◽  
Author(s):  
Vadim Issakov ◽  
Johannes Rimmelspacher ◽  
Saverio Trotta ◽  
Marc Tiebout ◽  
Amelie Hagelauer ◽  
...  

AbstractWe present a continuously tunable 52-to-67 GHz push–push dual-core voltage-controlled oscillator (VCO) in a 40 nm bulk complementary metal–oxide–semiconductor (CMOS) technology. The circuit is suitable for 60 GHz frequency-modulated-continuous-wave radar applications requiring a continuously tunable ultra-wide modulation bandwidth. The LC-tank inductor is used to couple the two VCO cores. The fundamental frequency of the VCO can be tuned from 26 to 33.5 GHz, which corresponds to a frequency tuning range of 25%. The second harmonic is extracted in a non-invasive way using a transformer. The primary side acts simultaneously as a second harmonic filter. The VCO achieves in measurement a low phase noise of −91.8 dBc/Hz at 1 MHz offset at 62 GHz and an output power of −20 dBm. The VCO including buffers dissipates in the dual-core operation mode 60 mA from a single 1.1 V supply and consumes a chip area of 0.58 mm2.


2019 ◽  
Vol 30 ◽  
pp. 12011
Author(s):  
Ivan Kracvhenko ◽  
Valeriy Vertegel

The paper presents a high-level system model of a W-band frequency-modulated continuous-wave radar which allows to determine and optimize main parameters of radar functional blocks at the system calculation and simulation stage. The structure of two-level model in Matlab and Simulink environment is considered and its features are described. Results of the radar simulation and justification of main functional blocks parameters are presented on the example of a W-band single-chip automotive radar.


2018 ◽  
Vol 27 (10) ◽  
pp. 1850158 ◽  
Author(s):  
Rekha Yadav ◽  
Pawan Kumar Dahiya ◽  
Rajesh Mishra

In this paper, a novel method to realize LC Voltage-Controlled-Oscillator (LC-VCO) operating at 76.2–76.7[Formula: see text]GHz frequency band for microwave RFIC component is presented. The model of cross-coupled differential LC-VCO is designed in 45[Formula: see text]nm technology using Complementary Metal Oxide Semiconductor (CMOS) process for Frequency Modulated Carrier Wave (FMCW) automotive radar sensors and RF transceivers application. The impact of VDD, control voltage and temperature variation on frequency shift, phase noise, and output power has been analyzed to optimize the trade-off between frequency, phase noise, and power requirement. The results depict that LC-VCO dissipates 10.45[Formula: see text]mW power at an operating voltage of 1.5[Formula: see text]V. The phase noise has been observed to be [Formula: see text]90[Formula: see text]dBc/Hz at 1[Formula: see text]MHz offset at 76[Formula: see text]GHz carrier frequency. The estimated layout area of IC is [Formula: see text]m2. The result shows the edge of the design over existing techniques.


2019 ◽  
Vol 30 ◽  
pp. 01006
Author(s):  
Alexander Kozhemyakin ◽  
Ivan Kravchenko

The paper presents design flow and simulation results of the W-band fundamental voltage-controlled oscillator in 0.13 μm SiGe BiCMOS technology for an automotive radar application. Oscillator provides fundamental oscillation range of 76.8 GHz to 81.2 GHz. According to simulation results phase noise is –89.3 dBc/Hz at 1 MHz offset, output power is –5.6 dBm and power consumption is 39 mW from 3.3 V source.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 573 ◽  
Author(s):  
Onur Toker ◽  
Suleiman Alsweiss

In this paper, we propose a novel 77 GHz automotive radar sensor, and demonstrate its cyberattack resilience using real measurements. The proposed system is built upon a standard Frequency Modulated Continuous Wave (FMCW) radar RF-front end, and the novelty is in the DSP algorithm used at the firmware level. All attack scenarios are based on real radar signals generated by Texas Instruments AWR series 77 GHz radars, and all measurements are done using the same radar family. For sensor networks, including interconnected autonomous vehicles sharing radar measurements, cyberattacks at the network/communication layer is a known critical problem, and has been addressed by several different researchers. What is addressed in this paper is cyberattacks at the physical layer, that is, adversarial agents generating 77 GHz electromagnetic waves which may cause a false target detection, false distance/velocity estimation, or not detecting an existing target. The main algorithm proposed in this paper is not a predictive filtering based cyberattack detection scheme where an “unusual” difference between measured and predicted values triggers an alarm. The core idea is based on a kind of physical challenge-response authentication, and its integration into the radar DSP firmware.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000766-000770 ◽  
Author(s):  
K.-F. Becker ◽  
L. Georgi ◽  
R. Kahle ◽  
S. Voges ◽  
F. Brandenburger ◽  
...  

For radar applications, the W-band frequency range (75 – 110 GHz) is a good candidate for high-resolution distance measurement and remote detection of small or hidden objects in distances of 10 cm to ≫ 20 m. As electromagnetic waves in this frequency range can easily penetrate rough atmosphere like fog, smoke or dust, W-band radars are perfectly suited for automotive, aviation, industrial and security applications. Additional benefit is that atmosphere has an absorption minimum at 94 GHz, so relative small output power is sufficient to achieve long range coverage. By combining and enhancing knowledge from the disciplines of heterogeneous integration technology and compound semiconductor-technology, the Fraunhofer Institutes IAF, IPA and IZM developed a miniaturized and low cost 94 GHz radar module. Result of this approach is a highly miniaturized radar module built using a modular approach. The radar components are mounted on a dedicated RF-NF-hybrid PCB while the signal processing is done on a separate board stacked below. This hybrid RF-module is combined with highly integrated digital processing PCB via micro connectors in a way that the radar system and an adapted conical HDPE-lens fit into an aluminum housing of 42×80×27 mm3 with a weight of only 160 grams for the whole module. The paper will describe the technological basis for such a frequency modulated continuous wave [FMCW] W-band radar module and describe in detail the technological features that enabled the assembly of such a miniaturized but high-performance system. The module yields an evaluated distance measurement accuracy of 5 ppm (5 μm deviation per meter target distance) while its low weight and small dimensions pave the way for a variety of new applications, including mobile operation.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2758
Author(s):  
Hyunmin Jeong ◽  
Sangkil Kim

This paper presents an educational low-cost C-band frequency-modulated continuous wave (FMCW) radar system for use in indoor through-wall metal detection. Indoor remote-sensing applications, such as through-wall detection and positioning, are essential for the comprehensive realization of the internet of things or super-connected societies. The proposed system comprises a two-stage radio-frequency power amplifier, a voltage-controlled oscillator, circuits for frequency modulation and system synchronization, a mixer, a 3-dB power divider, a low-noise amplifier, and two cylindrical horn antennas (Tx/Rx antennas). The antenna yields gain values in the 6.8~7.8 range when operating in the 5.83~5.94 GHz frequency band. The backscattered Tx signal is sampled at 4.5 kHz using the Arduino UNO analog-to-digital converter. Thereafter, the sampled signal is transferred to the MATLAB platform and analyzed using a customized FMCW radar algorithm. The proposed system is built using commercial off-the-shelf components, and it can detect targets within a 56.3 m radius in indoor environments. In this study, the system could successfully detect targets through a 4 cm-thick ply board with a measurement accuracy of less than 10 cm.


2018 ◽  
Vol 8 (1) ◽  
pp. 2356-2360 ◽  
Author(s):  
S. Bertoldo ◽  
C. Lucianaz ◽  
M. Allegretti

The European Telecommunications Standards Institute (ETSI) defines the frequency band of 77 GHz (W-band) as the one dedicated to automatic cruise control long-range radars. A car can be thought as a moving integrated weather sensor since it can provide meteorological information exploiting the sensors installed on board. This work presents the preliminary analysis of how a 77 GHz mini radar can be used as a short range microwave rain gauge. After the discussion of the Mie scattering formulation applied to a microwave rain gauge working in the W-band, the proposal of a new Z-R equation to be used for correct rain estimation is given. Atmospheric attenuation and absorption are estimated taking into account the ITU-T recommendations. Functional requirements in adapting automatic cruise control long-range radar to a microwave rain gauge are analyzed. The technical specifications are determined in order to meet the functional requirements.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 617 ◽  
Author(s):  
Qingzhen Xia ◽  
Dongze Li ◽  
Jiawei Huang ◽  
Jinwei Li ◽  
Hudong Chang ◽  
...  

In this paper, the influence of the DC-blocking capacitors leveraged in coplanar waveguide (CPW) matching networks is studied. CPW matching networks with series-connected DC-blocking capacitors are less sensitive to capacitance and are adopted in a 28 GHz power amplifier (PA). The PA targeting fifth-generation (5G) phased array is developed in 90 nm silicon-on-insulator complementary-metal-oxide-semiconductor (SOI CMOS) technology. A stacked field-effect-transistor (FET) architecture is elected in the output stage to boost the output power and reduce the die area. The PA with a core area of 0.31 mm2 demonstrates a maximum small signal gain of 13.7 dB and a −3 dB bandwidth of 6.3 GHz (22.9–29.2 GHz). The PA achieves a measured saturated output power (Psat) of 14.4 dBm and a peak power added efficiency (PAE) of 25% for continuous wave signals. At 24/25.6/28 GHz, the PA achieves +7.87/+9.16/+10.7 dBm measured output power and 6.21%/8.11%/10.17% PAE at −25 dBc error vector magnitude(EVM) for a 250 MHz-wide 64-quadrature amplitude modulation (64-QAM). The developed linear PA provides a great potential for low-cost 5G phased array transceivers.


Sign in / Sign up

Export Citation Format

Share Document