scholarly journals Effects of Metaxenia on Stone Cell Formation in Pear (Pyrus bretschneideri) Based on Transcriptomic Analysis and Functional Characterization of the Lignin-Related Gene PbC4H2

Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Xi Cheng ◽  
Jinyun Zhang ◽  
Han Wang ◽  
Tianzhe Chen ◽  
Guohui Li ◽  
...  

The deposition of lignin in flesh parenchyma cells for pear stone cells, and excessive stone cells reduce the taste and quality of the fruit. The effect of metaxenia on the quality of fruit has been heavily studied, but the effect of metaxenia on stone cell formation has not been fully elucidated to date. This study used P. bretschneideri (Chinese white pear) cv. ‘Yali’ (high-stone cell content) and P. pyrifolia (Sand pear) cv. ‘Cuiguan’ (low-stone cell content) as pollination trees to pollinate P. bretschneideri cv. ‘Lianglizaosu’ separately to fill this gap in the literature. The results of quantitative determination, histochemical staining and electron microscopy indicated that the content of stone cells and lignin in YL fruit (‘Yali’ (pollen parent) × ‘Lianglizaosu’ (seed parent)) was significantly higher than that in CL fruit (‘Cuiguan’ (pollen parent) × ‘Lianglizaosu’ (seed parent)). The transcriptome sequencing results that were obtained from the three developmental stages of the two types of hybrid fruits indicated that a large number of differentially expressed genes (DEGs) related to auxin signal transduction (AUX/IAAs and ARFs), lignin biosynthesis, and lignin metabolism regulation (MYBs, LIMs, and KNOXs) between the CL and YL fruits at the early stage of fruit development. Therefore, metaxenia might change the signal transduction process of auxin in pear fruit, thereby regulating the expression of transcription factors (TFs) related to lignin metabolism, and ultimately affecting lignin deposition and stone cell development. In addition, we performed functional verification of a differentially expressed gene, PbC4H2 (cinnamate 4-hydroxylase). Heterologous expression of PbC4H2 in the c4h mutant not only restored its collapsed cell wall, but also significantly increased the lignin content in the inflorescence stem. The results of our research help to elucidate the metaxenia-mediated regulation of pear stone cell development and clarify the function of PbC4H2 in cell wall development and lignin synthesis, which establishes a foundation for subsequent molecular breeding.

HortScience ◽  
2020 ◽  
Vol 55 (1) ◽  
pp. 8-13
Author(s):  
Wen-hui Li ◽  
Jian-rong Feng ◽  
Shi-kui Zhang ◽  
Zhang-hu Tang

‘Korla’ fragrant pear (Pyrus sinkiangensis T.T. Yu) variety has shown severe coarse skin in recent years. The intrinsic quality of its coarse fruit shows an increase in the number of stone cells and poor taste. In this study, stone cells and the cell wall of coarse pear (CP) and normal pear (NP) during various development stages were compared using paraffin-sectioning and transmission electron microscopy (TEM), and the relationships between lignin-related genes and stone cell formation and cell wall thickening were also analyzed. Our results show that giant stone cells are formed and distributed in the core of pear, whereas many of these crack 60 days after flowering (DAF). The period of stone cell fragmentation occurs later in CP fruits than in NP fruits. Parenchyma cell wall development in CP and NP fruits varies from 120 DAF to maturity. The parenchyma cell wall of CP fruits thickens, whereas that of NP fruits is thinner during the same period. The expression pattern of five genes (Pp4CL1-l, PpHCT-l, Pp4CL2-l, PpPOD4, and PpPOD25) coincides with changes in stone cell content in the pulp. Correlation analysis demonstrates a significant correlation between stone cell content and the expression level of the five genes (ρ < 0.05). In addition, the expression of those five genes and PpCCR1 genes in CP fruits significantly increases during maturation and is highly correlated with the thickness of the parenchyma cell wall. The aim of this work is to provide insights into the mechanism of stone cell and parenchyma cell wall development in pear fruits and identify important candidate genes to regulate the quality of fruit texture using bioengineering methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aisajan Mamat ◽  
Kuerban Tusong ◽  
Juan Xu ◽  
Peng Yan ◽  
Chuang Mei ◽  
...  

AbstractKorla pear (Pyrus sinkiangensis Yü) is a landrace selected from a hybrid pear species in the Xinjiang Autonomous Region in China. In recent years, pericarp roughening has been one of the major factors that adversely affects fruit quality. Compared with regular fruits, rough-skin fruits have a greater stone cell content. Stone cells compose sclerenchyma tissue that is formed by secondary thickening of parenchyma cell walls. In this work, we determined the main components of stone cells by isolating them from the pulp of rough-skin fruits at the ripening stage. Stone cell staining and apoptosis detection were then performed on fruit samples that were collected at three different developmental stages (20, 50 and 80 days after flowering (DAF)) representing the prime, late and stationary stages of stone cell differentiation, respectively. The same batches of samples were used for parallel transcriptomic and proteomic analysis to identify candidate genes and proteins that are related to SCW biogenesis in Korla pear fruits. The results showed that stone cells are mainly composed of cellulose (52%), hemicellulose (23%), lignin (20%) and a small amount of polysaccharides (3%). The periods of stone cell differentiation and cell apoptosis were synchronous and primarily occurred from 0 to 50 DAF. The stone cell components increased abundantly at 20 DAF but then decreased gradually. A total of 24,268 differentially expressed genes (DEGs) and 1011 differentially accumulated proteins (DAPs) were identified from the transcriptomic and proteomic data, respectively. We screened the DEGs and DAPs that were enriched in SCW-related pathways, including those associated with lignin biosynthesis (94 DEGs and 31 DAPs), cellulose and xylan biosynthesis (46 DEGs and 18 DAPs), S-adenosylmethionine (SAM) metabolic processes (10 DEGs and 3 DAPs), apoplastic ROS production (16 DEGs and 2 DAPs), and cell death (14 DEGs and 6 DAPs). Among the identified DEGs and DAPs, 63 significantly changed at both the transcript and protein levels during the experimental periods. In addition, the majority of these identified genes and proteins were expressed the most at the prime stage of stone cell differentiation, but their levels gradually decreased at the later stages.


2015 ◽  
Vol 140 (6) ◽  
pp. 573-579 ◽  
Author(s):  
Shutian Tao ◽  
Danyang Wang ◽  
Cong Jin ◽  
Wei Sun ◽  
Xing Liu ◽  
...  

Lignin is the main component of stone cells, and stone cell content is one of the crucial factors for fruit quality in chinese white pear (Pyrus ×bretschneideri). The lignin biosynthesis pathway is complex and involves many enzymatic reactions. Cinnamate-4-hydroxylase [C4H (EC.1.14.13.11)] is an essential enzyme in lignin metabolism. This study was conducted to investigate the effect of bagging on lignin metabolism during fruit development in chinese white pear. The study showed that bagging had little effect on stone cell content, lignin content, C4H activity, and C4H gene expression and that there was a positive correlation between C4H gene expression and lignin content as well as stone cell content. Moreover, a full-length complementary DNA (cDNA) encoding C4H (PbrC4H, GenBank accession number KJ577541.1) was isolated from chinese white pear fruit. The cDNA is 1515 bp long and encodes a protein of 504 amino acids. Sequence alignment suggested that the deduced protein belongs to the P450 gene family and that C4H might be located subcellularly in the cell membrane. The results indicate that bagging cannot change the lignin and stone cell content significantly and that C4H catalyzes a step in lignin biosynthesis. These findings provide certain theoretical references and practical criteria for improving the quality of chinese white pear.


2020 ◽  
Author(s):  
Aisajan Mamat ◽  
Xiaoli Zhang ◽  
Juan Xu ◽  
Peng Yan ◽  
Chuang Mei ◽  
...  

Abstract Background Korla fragrant pear(P•sinkiangensis Yü)is a famous local variety of Xinjiang China. One difficulty is the high stone cell content of these pears, which causes the formation of rough skins on the fruit. To elucidate the underlying mechanisms of stone cell formation, parallel analyses of the transcriptome and proteome was performed to identify important regulators and pathways involved in stone cell formation.Results Fruit samples were collected at three important time points depending on the stages of stone cell formation (20, 50 and 80 days after flowering). A total of 24268 differentially expressed genes (DEGs) and 1011 differentially accumulated proteins (DAPs) were identified from all the time points. Function analysis of the differential genes/proteins revealed that a set of candidates was associated with stone cell formation. These candidates mainly enriched in pathways involved in lignin biosynthesis, cellulose and xylan biosynthesis, S-adenosylmethionine (SAM) metabolic process, Reactive oxygen species (ROS) production, and cell death. We mined a total of 253 DEGs, and 100 DAPs, 63 of which were significantly changed at both the transcript and protein levels during fruit development.Conclusions Our findings reveal that some intriguing genes/proteins were previously unrecognized related with the sclereid formation, which provided new insights into molecular processes regulating sclereid accumulation in pear pulp.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiahui Xu ◽  
Xingyu Tao ◽  
Zhihua Xie ◽  
Xin Gong ◽  
Kaijie Qi ◽  
...  

AbstractPear [Pyrus bretschneideri cv. Dangshan Su] fruit quality is not always satisfactory owing to the presence of stone cells, and lignin is the main component of stone cells in pear fruits. Caffeoyl shikimate esterase (CSE) is a key enzyme in the lignin biosynthesis. Although CSE-like genes have been isolated from a variety of plant species, their orthologs are not characterized in pear. In this study, the CSE gene family (PbCSE) from P. bretschneideri was identified. According to the physiological data and quantitative RT-PCR (qRT-PCR), PbCSE1 was associated with lignin deposition and stone cell formation. The overexpression of PbCSE1 increased the lignin content in pear fruits. Relative to wild-type (WT) Arabidopsis, the overexpression of PbCSE1 delayed growth, increased the lignin deposition and lignin content in stems. Simultaneously, the expression of lignin biosynthetic genes were also increased in pear fruits and Arabidopsis. These results demonstrated that PbCSE1 plays an important role in cell lignification and will provide a potential molecular strategy to improve the quality of pear fruits.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gregory M. Weber ◽  
Jill Birkett ◽  
Kyle Martin ◽  
Doug Dixon ◽  
Guangtu Gao ◽  
...  

Abstract Background Transcription is arrested in the late stage oocyte and therefore the maternal transcriptome stored in the oocyte provides nearly all the mRNA required for oocyte maturation, fertilization, and early cleavage of the embryo. The transcriptome of the unfertilized egg, therefore, has potential to provide markers for predictors of egg quality and diagnosing problems with embryo production encountered by fish hatcheries. Although levels of specific transcripts have been shown to associate with measures of egg quality, these differentially expressed genes (DEGs) have not been consistent among studies. The present study compares differences in select transcripts among unfertilized rainbow trout eggs of different quality based on eyeing rate, among 2 year classes of the same line (A1, A2) and a population from a different hatchery (B). The study compared 65 transcripts previously reported to be differentially expressed with egg quality in rainbow trout. Results There were 32 transcripts identified as DEGs among the three groups by regression analysis. Group A1 had the most DEGs, 26; A2 had 15, 14 of which were shared with A1; and B had 12, 7 of which overlapped with A1 or A2. Six transcripts were found in all three groups, dcaf11, impa2, mrpl39_like, senp7, tfip11 and uchl1. Conclusions Our results confirmed maternal transcripts found to be differentially expressed between low- and high-quality eggs in one population of rainbow trout can often be found to overlap with DEGs in other populations. The transcripts differentially expressed with egg quality remain consistent among year classes of the same line. Greater similarity in dysregulated transcripts within year classes of the same line than among lines suggests patterns of transcriptome dysregulation may provide insight into causes of decreased viability within a hatchery population. Although many DEGs were identified, for each of the genes there is considerable variability in transcript abundance among eggs of similar quality and low correlations between transcript abundance and eyeing rate, making it highly improbable to predict the quality of a single batch of eggs based on transcript abundance of just a few genes.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 339
Author(s):  
Pablo Ventoso ◽  
Antonio J. Pazos ◽  
Juan Blanco ◽  
M. Luz Pérez-Parallé ◽  
Juan C. Triviño ◽  
...  

Some diatom species of the genus Pseudo-nitzschia produce the toxin domoic acid. The depuration rate of domoic acid in Pecten maximus is very low; for this reason, king scallops generally contain high levels of domoic acid in their tissues. A transcriptomic approach was used to identify the genes differentially expressed in the P. maximus digestive gland after the injection of domoic acid. The differential expression analysis found 535 differentially expressed genes (226 up-regulated and 309 down-regulated). Protein–protein interaction networks obtained with the up-regulated genes were enriched in gene ontology terms, such as vesicle-mediated transport, response to stress, signal transduction, immune system process, RNA metabolic process, and autophagy, while networks obtained with the down-regulated genes were enriched in gene ontology terms, such as response to stress, immune system process, ribosome biogenesis, signal transduction, and mRNA processing. Genes that code for cytochrome P450 enzymes, glutathione S-transferase theta-1, glutamine synthase, pyrroline-5-carboxylate reductase 2, and sodium- and chloride-dependent glycine transporter 1 were among the up-regulated genes. Therefore, a stress response at the level of gene expression, that could be caused by the domoic acid injection, was evidenced by the alteration of several biological, cellular, and molecular processes.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2830
Author(s):  
Aiai Zhang ◽  
Jing Zheng ◽  
Xuemiao Chen ◽  
Xueyin Shi ◽  
Huaisong Wang ◽  
...  

The peel color is an important external quality of melon fruit. To explore the mechanisms of melon peel color formation, we performed an integrated analysis of transcriptome and metabolome with three different fruit peel samples (grey-green ‘W’, dark-green ‘B’, and yellow ‘H’). A total of 40 differentially expressed flavonoids were identified. Integrated transcriptomic and metabolomic analyses revealed that flavonoid biosynthesis was associated with the fruit peel coloration of melon. Twelve differentially expressed genes regulated flavonoids synthesis. Among them, nine (two 4CL, F3H, three F3′H, IFS, FNS, and FLS) up-regulated genes were involved in the accumulation of flavones, flavanones, flavonols, and isoflavones, and three (2 ANS and UFGT) down-regulated genes were involved in the accumulation of anthocyanins. This study laid a foundation to understand the molecular mechanisms of melon peel coloration by exploring valuable genes and metabolites.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bo Chen ◽  
Huimin Xu ◽  
Yayu Guo ◽  
Paul Grünhofer ◽  
Lukas Schreiber ◽  
...  

AbstractTrees in temperate regions exhibit evident seasonal patterns, which play vital roles in their growth and development. The activity of cambial stem cells is the basis for regulating the quantity and quality of wood, which has received considerable attention. However, the underlying mechanisms of these processes have not been fully elucidated. Here we performed a comprehensive analysis of morphological observations, transcriptome profiles, the DNA methylome, and miRNAs of the cambium in Populus tomentosa during the transition from dormancy to activation. Anatomical analysis showed that the active cambial zone exhibited a significant increase in the width and number of cell layers compared with those of the dormant and reactivating cambium. Furthermore, we found that differentially expressed genes associated with vascular development were mainly involved in plant hormone signal transduction, cell division and expansion, and cell wall biosynthesis. In addition, we identified 235 known miRNAs and 125 novel miRNAs. Differentially expressed miRNAs and target genes showed stronger negative correlations than other miRNA/target pairs. Moreover, global methylation and transcription analysis revealed that CG gene body methylation was positively correlated with gene expression, whereas CHG exhibited the opposite trend in the downstream region. Most importantly, we observed that the number of CHH differentially methylated region (DMR) changes was the greatest during cambium periodicity. Intriguingly, the genes with hypomethylated CHH DMRs in the promoter were involved in plant hormone signal transduction, phenylpropanoid biosynthesis, and plant–pathogen interactions during vascular cambium development. These findings improve our systems-level understanding of the epigenomic diversity that exists in the annual growth cycle of trees.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 301
Author(s):  
Vishesh Kumar ◽  
Priyanka Jain ◽  
Sureshkumar Venkadesan ◽  
Suhas Gorakh Karkute ◽  
Jyotika Bhati ◽  
...  

Rice blast is a global threat to food security with up to 50% yield losses. Panicle blast is a more severe form of rice blast and the response of rice plant to leaf and panicle blast is distinct in different genotypes. To understand the specific response of rice in panicle blast, transcriptome analysis of blast resistant cultivar Tetep, and susceptible cultivar HP2216 was carried out using RNA-Seq approach after 48, 72 and 96 h of infection with Magnaporthe oryzae along with mock inoculation. Transcriptome data analysis of infected panicle tissues revealed that 3553 genes differentially expressed in HP2216 and 2491 genes in Tetep, which must be the responsible factor behind the differential disease response. The defense responsive genes are involved mainly in defense pathways namely, hormonal regulation, synthesis of reactive oxygen species, secondary metabolites and cell wall modification. The common differentially expressed genes in both the cultivars were defense responsive transcription factors, NBS-LRR genes, kinases, pathogenesis related genes and peroxidases. In Tetep, cell wall strengthening pathway represented by PMR5, dirigent, tubulin, cell wall proteins, chitinases, and proteases was found to be specifically enriched. Additionally, many novel genes having DOMON, VWF, and PCaP1 domains which are specific to cell membrane were highly expressed only in Tetep post infection, suggesting their role in panicle blast resistance. Thus, our study shows that panicle blast resistance is a complex phenomenon contributed by early defense response through ROS production and detoxification, MAPK and LRR signaling, accumulation of antimicrobial compounds and secondary metabolites, and cell wall strengthening to prevent the entry and spread of the fungi. The present investigation provided valuable candidate genes that can unravel the mechanisms of panicle blast resistance and help in the rice blast breeding program.


Sign in / Sign up

Export Citation Format

Share Document