scholarly journals The Use of Deep Container and Heterogeneous Substrate as Potentially Effective Nursery Practice to Produce Good Quality Nodal Seedlings of Populus sibirica Tausch

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 418
Author(s):  
Byung Bae Park ◽  
Si Ho Han ◽  
Jonathan O. Hernandez ◽  
Ji Young An ◽  
Batkhuu Nyam-Osor ◽  
...  

Nursery practices are considered major factors influencing seedling quality, which are likely to be maintained in the early establishment phase in the field. Here, we investigated the effects of container depth and substrate heterogeneity on the growth of Populus sibirica nodal seedlings to suggest an effective nursery practice for producing quality seedlings appropriate for forest establishment in a dry environment. We used two substrate heterogeneities (homogeneous and heterogeneous) and two container depth treatments (30 and 60 cm). Variations in root collar diameter (RCD) growth, height growth, stem and root biomass, root to stem ratio, and root mass in the first 15 cm depth from the soil surface across the treatments were computed. Results revealed that both substrate heterogeneity and container depth had no significant effects on the RCD and height growth of P. sibirica seedlings but significantly improved their root and stem biomass. Seedlings in the 60 cm containers generally accumulated higher root biomass than those in the 30 cm containers. There was an interaction effect of container depth and substrate heterogeneity treatments on root and total dry mass, such that seedlings grown in the 60 cm container using heterogeneous substrate resulted in the highest root and total biomass. Analyses of proportional root growth in the upper 15 cm of the containers compared to the total indicated that both the main effects of deeper containers (60 cm) and heterogeneous substrate have fewer roots at this depth, indicating a greater root density in the bottom of the deeper containers. Therefore, deeper containers and heterogeneous substrate may be used as an effective nursery practice to produce seedlings with root traits potentially suitable for harsh conditions, such as arid and semi-arid environments. However, further studies using other seedling morphological traits in conjunction with field-trial tests are needed for a definitive assessment of the effectiveness of deeper containers and heterogeneous substrate in producing good quality seedlings potentially suitable in a dry environment.

2004 ◽  
Vol 31 (10) ◽  
pp. 971 ◽  
Author(s):  
Darren M. Mingo ◽  
Julian C. Theobald ◽  
Mark A. Bacon ◽  
William J. Davies ◽  
Ian C. Dodd

Tomato (Lycopersicon esculentum Mill.) plants were grown in either a glasshouse (GH) or a controlled environment cabinet (CEC) to assess the effects of partial rootzone drying (PRD) on biomass allocation. Control and PRD plants received the same amounts of water. In control plants, water was equally distributed between two compartments of a split-root system. In PRD plants, only one compartment was watered while the other was allowed to dry. At the end of each drying cycle, wet and dry compartments were alternated. In the GH, total biomass did not differ between PRD and control plants after four cycles of PRD, but PRD increased root biomass by 55% as resources were partitioned away from shoot organs. In the CEC, leaf water potential did not differ between treatments at the end of either of two cycles of PRD, but stomatal conductance of PRD plants was 20% less at the end of the first cycle than at the beginning. After two cycles of PRD in the CEC, biomass did not differ between PRD and control plants, but PRD increased root biomass by 19% over the control plants. The promotion of root biomass in PRD plants was associated with the alternation of wet and dry compartments, with increased root biomass occurring in the re-watered compartment after previous exposure to soil drying. Promotion of root biomass in field-grown PRD plants may allow the root system to access resources (water and nutrients) that would otherwise be unavailable to control plants. This may contribute to the ability of PRD plants to maintain similar leaf water potentials to conventionally irrigated plants, even when smaller irrigation volumes are supplied.


2013 ◽  
Vol 33 (4) ◽  
pp. 699-708 ◽  
Author(s):  
Mariana M. Corradi ◽  
Alan R. Panosso ◽  
Marcílio V. Martins Filho ◽  
Newton La Scala Junior

The proper management of agricultural crop residues could produce benefits in a warmer, more drought-prone world. Field experiments were conducted in sugarcane production areas in the Southern Brazil to assess the influence of crop residues on the soil surface in short-term CO2 emissions. The study was carried out over a period of 50 days after establishing 6 plots with and without crop residues applied to the soil surface. The effects of sugarcane residues on CO2 emissions were immediate; the emissions from residue-covered plots with equivalent densities of 3 (D50) and 6 (D100) t ha-1 (dry mass) were less than those from non-covered plots (D0). Additionally, the covered fields had lower soil temperatures and higher soil moisture for most of the studied days, especially during the periods of drought. Total emissions were as high as 553.62 ± 47.20 g CO2 m-2, and as low as 384.69 ± 31.69 g CO2 m-2 in non-covered (D0) and covered plot with an equivalent density of 3 t ha-1 (D50), respectively. Our results indicate a significant reduction in CO2 emissions, indicating conservation of soil carbon over the short-term period following the application of sugarcane residues to the soil surface.


2020 ◽  
Author(s):  
Dan-Dan Li ◽  
Hong-Wei Nan ◽  
Chun-Zhang Zhao ◽  
Chun-Ying Yin ◽  
Qing Liu

Abstract Aims Competition, temperature, and nutrient are the most important determinants of tree growth in the cold climate on the eastern Tibetan Plateau. Although many studies have reported their individual effects on tree growth, little is known about how the interactions of competition with fertilization and temperature affect root growth. We aim to test whether climate warming and fertilization promote competition and to explore the functional strategies of Picea asperata in response to the interactions of these factors. Methods We conducted a paired experiment including competition and non-competition treatments under elevated temperature (ET) and fertilization. We measured root traits, including the root tip number over the root surface (RTRS), the root branching events over the root surface (RBRS), the specific root length (SRL), the specific root area (SRA), the total fine root length and area (RL and RA), the root tips (RT) and root branching events (RB). These root traits are considered to be indicators of plant resource uptake capacity and root growth. The root biomass and the nutrient concentrations in the roots were also determined. Important Findings The results indicated that ET, fertilization and competition individually enhanced the nitrogen (N) and potassium (K) concentrations in fine roots, but they did not affect fine root biomass or root traits, including RL, RT, RA and RB. However, both temperature and fertilization, as well as their interaction, interacting with competition increased RL, RA, RT, RB, and nutrient uptake. In addition, the SRL, SRA, RTRS and RBRS decreased under fertilization, the interaction between temperature and competition decreased SRL and SRA, while the other parameters were not affected by temperature or competition. These results indicate that Picea asperata maintains a conservative nutrient strategy in response to competition, climate warming, fertilization, and their interactions. Our results improve our understanding of the physiological and ecological adaptability of trees to global change.


2002 ◽  
Vol 32 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Ronald Heninger ◽  
William Scott ◽  
Alex Dobkowski ◽  
Richard Miller ◽  
Harry Anderson ◽  
...  

We (i) quantified effects of skidder yarding on soil properties and seedling growth in a portion of western Oregon, (ii) determined if tilling skid trails improved tree growth, and (iii) compared results with those from an earlier investigation in coastal Washington. Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were hand planted at eight recent clearcuts in skid ruts in either nontilled or tilled trails, in adjacent soil berms, and in adjacent logged-only portions. Four and 5 years after skidding, rut depths averaged 15 cm below the original soil surface; mean fine-soil bulk density (0–30 cm depth) below ruts of nontilled trails exceeded that on logged-only portions by 14%. Height growth on nontilled trails averaged 24% less than on logged-only portions in year 4 after planting and decreased to 6% less in year 7. For years 8–10, mean height growth was similar for all treatments. Reduced height growth lasted for about 7 years compared with 2 years for coastal Washington. Ten years after planting, trees in skid-trail ruts averaged 10% shorter with 29% less volume than those on logged-only portions. Tillage improved height and volume growth to equal that on logged-only portions. Generalizations about negative effects of skid trails on tree growth have limited geographic scope.


2019 ◽  
Vol 48 (4) ◽  
pp. 1215-1221
Author(s):  
Zikria Zafar ◽  
Fahad Rasheed ◽  
Muhammad Abdullah ◽  
Mir Md Abdus Salam ◽  
Muhammad Mohsin

A greenhouse experiment was conducted to investigate the effects of water deficit on growth and physiological parameters of Ficus benjamina and Conocarpus erectus. The results revealed that all growth parameters such as plant height, stem diameter, no. of leaves, no. of branches and chlorophyll contents significantly decreased under water deficit condition. Interestingly, although leaf, stem and total biomass production and allocation decreased significantly under water deficit, but root biomass production and allocation increased significantly. Similarly, stomatal conductance to water vapor decreased significantly and CO2 assimilation rate remained similar to control under water deficit condition. Resultantly, a significant increase in water use efficiency was evident in both species under water deficit condition. These results suggested that, in spite of a significant decrease in biomass production, young Conocarpus erectus and Ficus benjamina can tolerate water deficit which is due to sustained CO2 assimilation rate and increase in root biomass.


Insects ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 4 ◽  
Author(s):  
Sougueh Cheik ◽  
Rashmi Ramesh Shanbhag ◽  
Ajay Harit ◽  
Nicolas Bottinelli ◽  
Raman Sukumar ◽  
...  

Termites are undoubtedly amongst the most important soil macroinvertebrate decomposers in semi-arid environments in India. However, in this specific type of environment, the influence of termite foraging activity on soil functioning remains unexplored. Therefore, this study examines the link between the quality of litter and the functional impact of termite feeding preferences on soil properties and soil hydraulic conductivity in a deciduous forest in southern India. Different organic resources (elephant dung: “ED”, elephant grass: “EG”, acacia leaves: “AL” and layers of cardboard: “CB”) were applied on repacked soil cores. ED appeared to be the most attractive resource to Odontotermes obesus, leading to a larger amount of soil sheeting (i.e., the soil used by termites for covering the litter they consume), more numerous and larger holes in the ground and a lower soil bulk density. As a consequence, ED increased the soil hydraulic conductivity (4-fold) compared with the control soil. Thus, this study highlights that the more O. obesus prefers a substrate, the more this species impacts soil dynamics and water infiltration in the soil. This study also shows that ED can be used as an efficient substrate for accelerating the infiltration of water in southern-Indian soils, mainly through the production of galleries that are open on the soil surface, offering new perspectives on termite management in this environment.


2019 ◽  
Vol 43 (4) ◽  
pp. 496-520 ◽  
Author(s):  
Cinzia Panigada ◽  
Giulia Tagliabue ◽  
Eli Zaady ◽  
Offer Rozenstein ◽  
Roberto Garzonio ◽  
...  

Drylands, one of the planet’s largest terrestrial biomes, are suggested to be greatly threatened by climate change. Drylands are usually sparsely vegetated, and biological soil crusts (biocrusts) – that is, soil surface communities of cyanobacteria, mosses and/or lichens – can cover up to 70% of dryland cover. As they control key ecosystem processes, monitoring their spatial and temporal distribution can provide highly valuable information. In this study, we examine the potential of European Space Agency’s (ESA) Sentinel-2 (S2) data to characterize the spatial and temporal development of biocrust and vascular plant greening along a rainfall gradient of the Negev Desert (Israel). First, the chlorophyll a absorption feature in the red region (CRred) was identified as the index mostly sensitive to changes in biocrust greening but minimally affected by changes in soil moisture. This index was then computed on the S2 images and enabled monitoring the phenological dynamics of different dryland vegetation components from August 2015 to August 2017. The analysis of multi-temporal S2 images allowed us to successfully track the biocrust greening within 15 days from the first seasonal rain events in the north of Negev, and to identify the maximum development of annual vascular plants and greening of perennial ones. These results show potential for monitoring arid and semi-arid environments using the newly available S2 images, allowing new insights into dryland vegetation dynamics.


1985 ◽  
Vol 42 (7) ◽  
pp. 1296-1302 ◽  
Author(s):  
Daniel A. Soluk

Abundance and biomass of benthic macroinvertebrates from shifting sand areas in the bed of the Sand River in central Alberta, Canada, were examined for 1 yr. Macroinvertebrate density ranged from 12 000 to 78 000 individuals/m2, but total biomass was low (50–490 mg/m2 dry mass) due to the small size of most organisms. The interstitial larvae of two chironomid species (Robackia demeijerei and Rheosmittia sp.) contributed a mean of 80.6% biomass and 92.8% of total number of macroinvertebrates. Total annual secondary production of these two species (752.0 ± 144.5 mg∙m−2∙yr−1) was used as an estimate of total secondary production of benthic macroinvertebrates in shifting sand areas. Both R. demeijerei and Rheosmittia sp. exhibited larval growth and development rates much slower than those reported for comparably sized species in other habitats. Food or frequent disturbance may limit the growth of these species. Although unit area biomass and production were low relative to other lotie habitats, shifting sand areas make significant contributions to the river ecosystem because they occupy a large proportion of the river bed.


2016 ◽  
Vol 50 (6) ◽  
Author(s):  
Parvaze A. Sofi ◽  
Iram Saba

The present study was undertaken to assess the response of common bean under drought in respect of root traits and biomass partitioning in fifteen common bean genotypes. The basal root whorl number and the number of basal roots was highest in case of WB-185 and lowest in case of SR-1, whereas, the basal root growth angle was highest in case of WB-258 and lowest in case of WB-249. Rooting depth measured as the length of longest root harvested was highest in case of WB-6 (66.2) while as lowest value was recorded for WB-112 (20.4). Dry root weight was highest in case of WB-216 (0.45) and lowest value was recorded for WB-341 (0.22). Similarly leaf biomass was highest in case of WB-6 (0.58) followed by WB-216 (0.58) and the lowest value recorded for WB-1186 (0.12). Shoot dry weight was highest for WB-6 (0.55) followed by WB-216 (0.44) and the lowest value recorded for WB-1186 (0.118). Pod dry weight was highest for WB-489 (2.28) followed by WB-216 (2.19) and the lowest value recorded for WB-83 (0.68).489. Root biomass proportion was highest for WB-195 (18.34) and lowest for WB-489 (10.00). Similarly leaf biomass to total biomass was highest in case of WB-83 (23.19) whereas lowest value was recorded for WB-1186 (7.60). Highest stem biomass proportion was recorded for Arka Anoop (19.19) and the lowest value was recorded for WB-1186 (7.591). Biomass allocation to pods was highest in case of WB-489 (69.92) followed by WB-1186 (68.69) whereas lowest value was recorded for WB-83 (45.40).


2006 ◽  
Vol 24 (4) ◽  
pp. 213-217
Author(s):  
S.M. Scheiber ◽  
Richard C. Beeson

Abstract Begonias (Begonia semperflorens) were transplanted into an open-sided clear polyethylene covered shelter to evaluate the effect of root ball condition on establishment and growth. Three root ball classes were evaluated: non root-bound (NRB; 6 week old plants), root-bound (RB; 10 week old plants), and root-bound with the bottom 1 cm of the root ball removed (RBM). Non root-bound plants had greater growth rates for both height and faster rates of accumulation for cumulative root dry mass and new root dry mass relative to the other treatments tested. Cumulative shoot dry mass, new shoot dry mass, and total biomass accumulation rates were slower among RB plants compared to other rootball conditions. Mean canopy size, shoot dry mass, and biomass of NRB were significantly less at transplant; however all parameters were comparable among treatments 12 weeks later. Final mean shoot to root ratios were lower for the NRB treatment relative to RBM. Results indicate smaller, NRB transplants establish faster in the landscape. Furthermore, rootball manipulation is not recommended as it had no significant effect on root establishment or canopy growth of this annual bedding plant in the landscape.


Sign in / Sign up

Export Citation Format

Share Document