scholarly journals Toward Incorporation of Membrane Properties Non-Uniformity in Spiral Wound Module Performance Simulators—Effect of Non-Uniform Permeability on Fouling Layer Evolution

Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 127 ◽  
Author(s):  
Margaritis Kostoglou ◽  
Anastasios Karabelas

A performance simulator of spiral wound membrane (SWM) modules used for desalination is a valuable tool for process design and optimization. The existing state-of-the-art mesoscale simulation tools account for the spatial non-uniformities created by the operation itself (flow, pressure, and concentration distributions) but they assume uniform membrane properties. However, experimental studies reveal that membrane properties are by no means uniform. Therefore, the need arises to account for this non-uniformity in simulation tools thus enabling a systematic assessment of its impact, among other benefits; a first step toward this goal is presented herein. In particular, the issue of an organic fouling layer growing on a membrane with non-uniform permeability is analyzed. Several mathematical treatments of the problem are discussed and indicative results are presented. The concept of fouling layer thickness probability density function is suggested as a means to introduce sub-grid level calculations in existing simulation tools. The analysis leads to the selection of an appropriate methodology to incorporate this effect in the dynamic simulation of fouling layer evolution at the membrane-sheet scale.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 267
Author(s):  
Tomasz Rudnicki

The article presents a new functional method of designing self-compacting concrete (SCC). The assumptions of the functional method of designing self-compacting concrete were based on the double coating assumption (i.e., it was assumed that the grains of coarse aggregate were coated with a layer of cement mortar, whereas the grains of sand with cement paste). The proposed method is composed of four stages, each of which is responsible for the selection of a different component of the concrete mix. The proposed designing procedure takes into consideration such a selection of the mineral skeleton in terms of the volumetric saturation of the mineral skeleton, which prevents the blocking of aggregate grains, and the designed liquid phase demonstrated high structural viscosity and low yield stress. The performed experimental studies, the simulation of the elaborated mathematical model fully allowed for the verification of the theoretical assumptions that are the basis for the development of the method of designing self-compacting concrete.


2021 ◽  
Vol 54 (3) ◽  
pp. 1-42
Author(s):  
Divya Saxena ◽  
Jiannong Cao

Generative Adversarial Networks (GANs) is a novel class of deep generative models that has recently gained significant attention. GANs learn complex and high-dimensional distributions implicitly over images, audio, and data. However, there exist major challenges in training of GANs, i.e., mode collapse, non-convergence, and instability, due to inappropriate design of network architectre, use of objective function, and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions, and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on the broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present promising research directions in this rapidly growing field.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3389
Author(s):  
Marcin Kamiński ◽  
Krzysztof Szabat

This paper presents issues related to the adaptive control of the drive system with an elastic clutch connecting the main motor and the load machine. Firstly, the problems and the main algorithms often implemented for the mentioned object are analyzed. Then, the control concept based on the RNN (recurrent neural network) for the drive system with the flexible coupling is thoroughly described. For this purpose, an adaptive model inspired by the Elman model is selected, which is related to internal feedback in the neural network. The indicated feature improves the processing of dynamic signals. During the design process, for the selection of constant coefficients of the controller, the PSO (particle swarm optimizer) is applied. Moreover, in order to obtain better dynamic properties and improve work in real conditions, one model based on the ADALINE (adaptive linear neuron) is introduced into the structure. Details of the algorithm used for the weights’ adaptation are presented (including stability analysis) to perform the shaft torque signal filtering. The effectiveness of the proposed approach is examined through simulation and experimental studies.


2000 ◽  
Vol 41 (10-11) ◽  
pp. 117-123 ◽  
Author(s):  
C. Visvanathan ◽  
P. Svenstrup ◽  
P. Ariyamethee

This paper presents a case study of a natural gas production site covering various technical issues related to selection of an appropriate Reverse Osmosis (RO) system. The long-term field experience indicates the necessity of the selection of appropriate pretreatment systems for fouling-free RO operational conditions. The produced water has a variety of impurities such as oil and grease, process chemicals used for corrosion and scaling control, and dehydration of natural gas, etc. This situation leads to a complicated and extremely difficult task for a membrane specialist to design RO systems, especially the pre-treatment section. Here as part of the pretreatment selection, two types of UF membrane modules viz. spiral wound and hollow fibre, with MWCO of 8000 and 50,000 Dalton respectively, were tested in parallel with NF membranes of the spiral wound type with MWCO 200 Dalton. The UF permeate is used as feed for RO compatibility testing. Both configurations of UF failed to be compatible, due to irreversible fouling of the RO membrane. The NF membrane, however, showed interesting results, due to membrane stability in terms of cleaning and fouling. The NF plant with 50% capacity gave a recovery of 75% and the RO plant gave a recovery of 60% versus the expected 92–95%. The long-term tests have indicated that the reminder of the membranes could be installed to achieve full capacity of the plant. This study also demonstrates the importance of selection of proper pre-treatment set-up for the RO system design.


1985 ◽  
Vol 18 (4) ◽  
pp. 423-450 ◽  
Author(s):  
C. G. Kurland ◽  
Måns Ehrenberg

SUMMARYTheoretical as well as experimental studies of translational accuracy have most often been concerned with the selection of aminoacyl-tRNA by codon-programmed ribosomes. The selection of the successive codons on the mRNA has received much less attention, probably because it represents both conceptually and experimentally, a much more demanding physical problem. Nevertheless, it would seem that errors in the selection of the codon are potentially much more destructive than errors in selection of aminoacyl-tRNA species. This can be appreciated from the following.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Youlong Chen ◽  
Yong Zhu ◽  
Xi Chen ◽  
Yilun Liu

In this work, the compressive buckling of a nanowire partially bonded to an elastomeric substrate is studied via finite-element method (FEM) simulations and experiments. The buckling profile of the nanowire can be divided into three regimes, i.e., the in-plane buckling, the disordered buckling in the out-of-plane direction, and the helical buckling, depending on the constraint density between the nanowire and the substrate. The selection of the buckling mode depends on the ratio d/h, where d is the distance between adjacent constraint points and h is the helical buckling spacing of a perfectly bonded nanowire. For d/h > 0.5, buckling is in-plane with wavelength λ = 2d. For 0.27 < d/h < 0.5, buckling is disordered with irregular out-of-plane displacement. While, for d/h < 0.27, buckling is helical and the buckling spacing gradually approaches to the theoretical value of a perfectly bonded nanowire. Generally, the in-plane buckling induces smaller strain in the nanowire, but consumes the largest space. Whereas the helical mode induces moderate strain in the nanowire, but takes the smallest space. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and three-dimensional complex nanostructures.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1749
Author(s):  
Elzbieta Szychta ◽  
Leszek Szychta

Energy efficiency of systems of water pumping is a complex problem since efficiency of two distinct interacting systems needs to be combined: water and power supply. This paper introduces a non-intrusive method of calculating the so-called “collective losses” of a cage induction motor. The term “collective losses”, which the authors define, allows for accurate estimation of motor efficiency. Control system of a pump determines operating point of a pumping station, and thus its efficiency. General estimated performance characteristics of a motor, components of a control system, are assumed to serve selection of a range of pumping speed variations. Rotational speed has a direct effect on motor load torque, pump power and head, and thus on motor performance. Hellwig’s statistical method was used to specify characteristics of estimated collective losses on the basis of experimental studies of 21 motors rated at up to 2.2 kW. The results of simulations and experiments are used to verify validity and efficiency of the suggested method. The method is non-intrusive, simple to use, and requires minimum data.


2022 ◽  
Vol 14 (4) ◽  
pp. 82-89
Author(s):  
Sergey Polyakov ◽  
V. Akimov ◽  
A. Polukazakov

The article discusses the issues of implementing the conversion of input signals of «smart» sensors for automation of the heating system, an algorithm for calculating the parameters of measuring circuits with a nonlinear element and an operational amplifier is developed. The issues of modeling cascade control of residential building heating systems are investigated. The results of the analysis and selection of parameters of the cascade control system are presented. An algorithm implementing the operation of a virtual object is given. The structures of management of residential building objects are proposed. The method of calculating the adjustment of the controller for cascade control is given. For the heating system stand, the procedure for setting the parameters of the process of PID control of the coolant temperature is considered. The results confirming the achievability of the proposed structural changes are obtained. The results of experimental studies are presented.


2020 ◽  
Vol 17 (35) ◽  
pp. 599-608 ◽  
Author(s):  
Alexander A. OREKHOV ◽  
Yuri A. UTKIN ◽  
Polina F. PRONINA

One of the significant innovative technologies is the creation of large-sized structures that work for a long time in space and meet stringent restrictions on overall mass characteristics. Among these structures, in the first place, is the section of bearing truss (BT). This article presents the results of experimental studies of sectors of load-bearing trusses of mesh design for compression. Recently, composite mesh cylindrical shells are used as spacecraft housings. The mesh shell is a supporting structure to which the instruments and mechanisms of the spacecraft are attached. The truss section is made of cross-linked polymer composite material with carbon fibers. The objective of the tests is to confirm the possibility of creating a lightweight mesh construction using a carbon fiber reinforced polymer composite material. To achieve this goal, the authors were assigned the following tasks: selection of carbon filler of polymer composite materials (PCM); selection of PCM binder; determination of the degree of carbon fiber reinforcement; choice of the number and orientation paths of spiral ribs, number of ring ribs and the sizes of individual ribs. As a result of the research, the calculated indicators for ensuring the bearing capacity and stiffness under the application of axial compressive load were obtained. At the same time, with the determination of bearing capacity, the deformation characteristics of the structure were twice determined in order to confirm their repeatability, as well as linear nature of the dependence of axial and radial deformations as a result of the applied load.


Author(s):  
S. M. Dmitriev ◽  
A. V. Gerasimov ◽  
A. A. Dobrov ◽  
D. V. Doronkov ◽  
A. N. Pronin ◽  
...  

The article presents the results of experimental studies of the local hydrodynamics of the coolant flow in the mixed core of the VVER reactor, consisting of the TVSA-T and TVSA-T mod.2 fuel assemblies. Modeling of the flow of the coolant flow in the fuel rod bundle was carried out on an aerodynamic test stand. The research was carried out on a model of a fragment of a mixed core of a VVER reactor consisting of one TVSA-T segment and two segments of the TVSA-T.mod2. The flow pressure fields were measured with a five-channel pneumometric probe. The flow pressure field was converted to the direction and value of the coolant velocity vector according to the dependencies obtained during calibration. To obtain a detailed data of the flow, a characteristic cross-section area of the model was selected, including the space cross flow between fuel assemblies and four rows of fuel rods of each of the TVSA fuel assemblies. In the framework of this study the analysis of the spatial distribution of the projections of the velocity of the coolant flow was fulfilled that has made it possible to pinpoint regularities that are intrinsic to the coolant flowing around spacing, mixing and combined spacing grates of the TVSA. Also, the values of the transverse flow of the coolant caused by the flow along hydraulically nonidentical grates were determined and their localization in the longitudinal and cross sections of the experimental model was revealed. Besides, the effect of accumulation of hydrodynamic flow disturbances in the longitudinal and cross sections of the model caused by the staggered arrangement of hydraulically non-identical grates was determined. The results of the study of the coolant cross flow between fuel assemblies interaction, i.e. between the adjacent TVSA-T and TVSA-T mod.2 fuel assemblies were adopted for practical use in the JSC of “Afrikantov OKB Mechanical Engineering” for assessing the heat engineering reliability of VVER reactor cores; also, they were included in the database for verification of computational hydrodynamics programs (CFD codes) and for detailed cell-based calculation of the reactor core.


Sign in / Sign up

Export Citation Format

Share Document