scholarly journals Protective Effect of Prunus mume Fermented with Mixed Lactic Acid Bacteria in Dextran Sodium Sulfate-Induced Colitis

Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 58
Author(s):  
Jeong-Ho Kim ◽  
Yeong-Seon Won ◽  
Hyun-Dong Cho ◽  
Seong-Min Hong ◽  
Kwang-Deog Moon ◽  
...  

The fruit of Prunus mume (PM) is widely cultivated in East Asia, and it has been used as a folk medication for gastrointestinal disorders, e.g., diarrhea, stomach ache and ulceration. In this study, the pectinase-treated PM juice (PJ) was fermented with Lactobacillus strains containing fundamental organic acids and free amino acids. The PJ fermented with Lactobacillus plantarum and L. casei (FP) was investigated for its protective effect in dextran sodium sulfate (DSS)-induced colitis mice model. The administration of FP reduced lipid peroxidation and histopathological colitis symptoms, e.g., shortening of the colon length, depletion of mucin, epithelial injury and ulceration, in colonic tissues. The FP-supplemented group showed the alleviation of pro-inflammatory cytokines. Compared with the DSS control group, the supplementation of FP significantly reduced the levels of serum interferon-γ (IFN-γ), interleukin (IL)-1β, IL-6, IL-12 and IL-17 as well as colonic tumor necrosis factor-α, IFN-γ, IL-12 and IL-17. Furthermore, the DSS-induced TUNEL-positive area was significantly reduced by the FP supplementation. These results show that the supplementation of FP fermented with mixed lactic acid bacteria, L. plantarum and L. casei, elucidated the protective effect in DSS-induced colitis mice. Hence, this study suggests that FP can be utilized as a natural therapeutic agent for colitis and intestinal inflammation.

2017 ◽  
pp. 147-162 ◽  
Author(s):  
D. LACKEYRAM ◽  
D. YOUNG ◽  
C. J. KIM ◽  
C. YANG ◽  
T. L. ARCHBOLD ◽  
...  

Intestinal inflammation induced with dextran sodium sulfate (DSS) is used to study acute or chronic ulcerative colitis in animal models. Decreased gut tissue anti-inflammatory cytokine IL-10 concentration and mRNA abundance are associated with the development of chronic bowel inflammation. Twelve piglets of 3 days old were fitted with an intragastric catheter and randomly allocated into control and DSS groups by administrating either sterile saline or 1.25 g of DSS/kg body weight (BW) in saline per day, respectively, for 10 days. Growth rate and food conversion efficiency were reduced (p<0.05) in the DSS piglets compared with the control group. Quantitative histopathological grading of inflammation in the jejunum and colon collectively showed that the DSS treatment resulted in 12 fold greater (p<0.05) inflammation severity scoring in the colon than in the jejunum, indicative of chronic ulcerative colitis in the colon. Upper gut permeability endpoint was 27.4 fold higher (p<0.05) in the DSS group compared with the control group. The DSS group had higher concentrations and mRNA abundances (p<0.05) of TNF- and IL-6 in the jejunal and colonic tissues compared with the control group. Colonic concentration and mRNA abundance of IL-10 were reduced (p<0.05), however, jejunal IL-10 mRNA abundance was increased (p<0.05) in the DSS group compared with the control group. In conclusion, administration of DSS at 1.25 g/kg BW for 10 days respectively induced acute inflammation in the jejunum and chronic inflammation and ulcerative colitis in the colon with substantially decreased colonic concentration and mRNA abundance of IL-10 in the young pigs, mimicking the IL-10 expression pattern in humans associated with chronic bowel inflammation.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 280
Author(s):  
Linh Nguyen Thi Truc ◽  
Tuu Nguyen Thanh ◽  
To Tran Thi Hong ◽  
Day Pham Van ◽  
Minh Vo Thi Tuyet ◽  
...  

This study aimed to evaluate the growth, survival rate, and resistance to acute hepatopancreatic necrosis disease (AHPND) of white leg shrimp (Penaeus vannamei) by using Lactobacillus plantarum, Lactobacillus fermentum, and Pediococcus pentosaceus mixed with feed, and at the same time supplying CNP in a ratio of 15:1:0.1 to the water. As a result, the treatments that shrimp were fed with feed containing lactic acid bacteria (LAB), especially L. plantarum, have increased shrimp growth, total hemocyte cells, granulocyte cells, and hyaline cells significantly (p < 0.05) in comparison to the control group. The supply of CNP to the water has promoted the intensity of V. parahaemolyticus effects on shrimp health and significantly decreased total hemocyte cells, granulocyte cells, and hyaline cells by 30–50% in the period after three days of the challenge, except in L. plantarum treatment, which had only a 20% decrease compared to other treatments. In CNP supplying treatments, the AHPND infected rate and mortality of shrimp were higher than those in other treatments. In summary, the supply of CNP had significantly reduced the shrimp’s immune response and promoted the susceptibility of shrimp to AHPND in both cases of use with and without LAB-containing diets.


2021 ◽  
Vol 11 (13) ◽  
pp. 5765
Author(s):  
Joo-Yun Kim ◽  
Eun-Jung Choi ◽  
Jae-Ho Lee ◽  
Myeong-Seok Yoo ◽  
Keon Heo ◽  
...  

Vitamin B2, also known as riboflavin, is essential for maintaining human health. The purpose of this study was to isolate novel lactic acid bacteria that overproduce vitamin B2 and to validate their potential as probiotics. In this study, Lactobacillus plantarum HY7715 (HY7715) was selected among lactic acid bacteria isolated from Kimchi. HY7715 showed a very high riboflavin-producing ability compared to the control strain due to the high expression of ribA, ribB, ribC, ribH, and ribG genes. HY7715 produced 34.5 ± 2.41 mg/L of riboflavin for 24 h without consuming riboflavin in the medium under optimal growth conditions. It was able to produce riboflavin in an in vitro model of the intestinal environment. In addition, when riboflavin deficiency was induced in mice through nutritional restriction, higher levels of riboflavin were detected in plasma and urine in the HY7715 administration group than in the control group. HY7715 showed high survival rate in simulated gastrointestinal conditions and had antibiotic resistance below the cutoff MIC value suggested by the European Food Safety Authority; moreover, it did not cause hemolysis. In conclusion, HY7715 could be considered a beneficial probiotic strain for human and animal applications, suggesting that it could be a new alternative to address riboflavin deficiency.


2018 ◽  
Vol 51 (1) ◽  
pp. 441-451 ◽  
Author(s):  
Gang Liu ◽  
Wenxin Yan ◽  
Sujuan  Ding ◽  
Hongmei Jiang ◽  
Yong Ma ◽  
...  

Background/Aims: There are known links between inflammatory bowel disease (IBD) and changes in the microbiota of the gut and inflammation and oxidative stress. In this study, a colitis model induced by dextran sodium sulfate (DSS) in mice is used to evaluate whether the presence of bioactive peptides IRW (Ile-Arg-Trp) and IQW (Ile-Gln-Trp) peptides is advantageous. Methods: The mice were arbitrarily assigned to the following four groups: (i) control (untreated), (ii) dextran sodium sulfate (DSS) treated, (iii) IRW-DSS treated, and (iv) IQW-DSS treated. For 7 days, the control group subjects had unrestricted access to untreated drinking water, whereas the drinking water supplied to the subjects in the DSS, IRW-DSS, and IQW-DSS groups during this period consisted of 5% DSS solution. The colonic lesions were scored after hematoxylin and eosin staining. Serum antioxidant capacity was analyzed by 2,2’-azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) radical cation decolorization test and the microbiota in the colonic contents were sequenced by HiSeq2500 PE250. Results: The presence of DSS reduced daily weight gain, enhanced histopathology scores, and inhibited antioxidant enzyme expression. Superoxide dismutase, catalase, and glutathione peroxidase activities in the DSS-induced colitis model were significantly enhanced (P < 0.05) in the presence of dietary IRW and IQW. Furthermore, the Simpson index was significantly increased (P < 0.05) in the presence of dietary IRW and IQW compared to the control group. IRW and IQW increased the abundance of Coprococcus_1, Ruminococcaceae_UCG-014, and Desulfovibrio compared to the control group and DSS group. Furthermore, IQW decreased the abundance of Bacteroides in relation to the control group, but increased Parabacteroides. In addition, IRW increased the level of Anaerotruncus, Oscillibacter, and Ruminiclostridium_9 compared to the control group. Conclusion: This study concludes that the presence of IRW or IQW can mitigate DSS-induced oxidative stress by improving the activities of antioxidant enzymes, increasing intestinal microbial diversity and enhancing the abundance of gut microbiota, which may help maintain the homeostasis of host health and microenvironment in a DSS-induced mouse model, thus providing a potential further treatment for IBD patients.


2008 ◽  
Vol 74 (7) ◽  
pp. 1997-2003 ◽  
Author(s):  
Mathieu Millette ◽  
Gilbert Cornut ◽  
Claude Dupont ◽  
François Shareck ◽  
Denis Archambault ◽  
...  

ABSTRACT This study demonstrated the capacity of bacteriocin-producing lactic acid bacteria (LAB) to reduce intestinal colonization by vancomycin-resistant enterococci (VRE) in a mouse model. Lactococcus lactis MM19 and Pediococcus acidilactici MM33 are bacteriocin producers isolated from human feces. The bacteriocin secreted by P. acidilactici is identical to pediocin PA-1/AcH, while PCR analysis demonstrated that L. lactis harbors the nisin Z gene. LAB were acid and bile tolerant when assayed under simulated gastrointestinal conditions. A well diffusion assay using supernatants from LAB demonstrated strong activity against a clinical isolate of VRE. A first in vivo study was done using C57BL/6 mice that received daily intragastric doses of L. lactis MM19, P. acidilactici MM33, P. acidilactici MM33A (a pediocin mutant that had lost its ability to produce pediocin), or phosphate-buffered saline (PBS) for 18 days. This study showed that L. lactis and P. acidilactici MM33A increased the concentrations of total LAB and anaerobes while P. acidilactici MM33 decreased the Enterobacteriaceae populations. A second in vivo study was done using VRE-colonized mice that received the same inocula as those in the previous study for 16 days. In L. lactis-fed mice, fecal VRE levels 1.73 and 2.50 log10 CFU/g lower than those in the PBS group were observed at 1 and 3 days postinfection. In the P. acidilactici MM33-fed mice, no reduction was observed at 1 day postinfection but a reduction of 1.85 log10 CFU/g was measured at 3 days postinfection. Levels of VRE in both groups of mice treated with bacteriocin-producing LAB were undetectable at 6 days postinfection. No significant difference in mice fed the pediocin-negative strain compared to the control group was observed. This is the first demonstration that human L. lactis and P. acidilactici nisin- and pediocin-producing strains can reduce VRE intestinal colonization.


2015 ◽  
Vol 6 (4) ◽  
pp. 505-512 ◽  
Author(s):  
M. Yakovlieva ◽  
T. Tacheva ◽  
S. Mihaylova ◽  
R. Tropcheva ◽  
K. Trifonova ◽  
...  

In recent years, many authors have investigated the possible antidiabetic effect of lactic acid bacteria. Lactobacillus species constitute a major part of the lactic acid bacteria group and have been found to exhibit beneficial effects on the development of diabetes and its complications. In the current study, we investigated the effects of newly characterised Bulgarian Lactobacillus strains, Lactobacillus brevis 15 and Lactobacillus plantarum 13, on blood glucose levels and body weight of rats fed a fructose-enriched diet. An experiment was conducted over a period of 8 weeks with 24 2-month-old Wistar rats randomly assigned to receive a standard diet (Con, control group), fructose-enriched diet (Fr group), standard diet with probiotics given twice a week (Pro group), and fructose-enriched diet with probiotics given twice a week (Pro+Fr group). At the end of the experimental period, a statistically significant increase in body weight was observed in all experimental groups (P<0.0001). The highest rise was seen in the fructose group (Fr, 169±19 g), followed by the Pro+Fr group (153±15 g), Pro group (149±13 g), and Con group (141±5 g). Moreover, the final blood glucose levels had risen significantly in the groups receiving fructose either without (Fr; P<0.0001) or with lactobacilli (Pro+Fr; P=0.002), while the rise was insignificant in the group of rats given probiotic supplementation only (Pro, P=0.071) and inexistent in the Con group (P=0.999). The highest elevation of blood glucose levels was observed in the Fr group (3.18 mmol/l), followed by the Pro+Fr group (2.00 mmol/l) whereas the Pro group showed the lowest levels (0.60 mmol/l). The results of our study suggest that the newly characterised Bulgarian Lactobacillus strains, L. brevis 15 and L. plantarum 13, could be considered as possible probiotics and might be able to prevent some metabolic disturbances.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Eun Yeong Jang ◽  
Yejin Ahn ◽  
Hyung Joo Suh ◽  
Ki-Bae Hong ◽  
Kyungae Jo

Constipation is a chronic disease caused by infrequent, inadequate, and difficult bowel movements. The present study aimed to evaluate the potential laxative effect of maltooligosaccharide (MOS) on loperamide-induced constipation in a rat model. In vitro experiments were conducted to evaluate the effect of MOS on the growth of lactic acid bacteria. Moreover, to examine the effect of MOS administration on Sprague-Dawley (SD) rats with loperamide-induced constipation, the drinking water for the rats was supplemented with 10% or 15% of MOS for 14 days, and, thereafter, the improvement in constipation was assessed. For this, the rats were divided into five groups: normal (Nor), loperamide-induced constipated (Con), positive control (15% of dual-oligosaccharide (DuO-15)), 10% MOS treated (MOS-10), and 15% MOS-treated (MOS-15). In an in vitro test, MOS treatment promoted the growth of lactic acid bacteria except Lactobacillus bulgaricus. Treatment with higher MOS dose relieved constipation in rats by improving the fecal pellet and water content. Furthermore, in the high MOS dose group, the cecal short-chain fatty acid levels significantly increased compared to those in the control group (P<0.001). MOS treatment also improved the mucosal thickness as well as mucin secretion and increased the area of intestinal Cajal cells compared to that in the control group (P<0.001). These findings suggest that MOS relieves constipation and has beneficial effect on the gastrointestinal tract, and, therefore, it can be used as an ingredient in functional foods for treating constipation or improving intestinal health.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 113-120
Author(s):  
Soumya S Dash ◽  
Smaranika Pattnaik

The aim of this study was to evaluate the antifungal efficacy of Kocuria marina (BMKo1) derived Lactic acid against Epidermophyton floccosum (MTCC-613) infections induced on male Swiss Albino mice model (Mus musculus).  For this purpose, the isolated strain was subjected to ‘flask fermentation’ and the Lactic acid produced as fermentation product, was quantified and analysed. Prior to preclinical test, healthy mice models of approximately 8 weeks old and 25-30 gm (weight) were subjected to intra-dermal administration for a period of 15 days to test for toxicity. Mortality, clinical signs, body weight changes were continually monitored. Then the mouse models were inoculated with 100 µl/ml (V/V) of E. floccosum (MTCC-613) spore suspensions following ‘Excision model’. After induction of the infection, the symptomatic mice groups were subjected to topical application of Kocuria lactic acid cream based formulation at a concentration of 1µl/ml (V/V). The naked eye observations were made on the infected lesions till the absolute deduction of infection of excised skin surfaces. The degrees of deduction of infection were converted into scores and the percentages (%) of deduction of infection were calculated and the average value was derived. There were inclusion of positive control (Fluconazole) and negative control (group with infection induced excision, but without any drug application) mice groups for the sake of comparison. Further, with absolute deduction of infection score observed in mice group, applied with Kocuria derived Lactic acid was akin to Fluconazole activity. However, the infection induced mice group was found to be with substantial increase of degree of infection. This study have curtain raised about the anti Epidermophyton infection activity of a cream based  Cell free Lactic acid derived from a non pathogenic strain of Kocuria marina on mouse models. Keywords: Kocuria marina, Epidermophyton floccosum, Lactic acid


2020 ◽  
Vol 26 (8) ◽  
pp. 1199-1211 ◽  
Author(s):  
Rong Lu ◽  
Mei Shang ◽  
Yong-Guo Zhang ◽  
Yang Jiao ◽  
Yinglin Xia ◽  
...  

Abstract Background Probiotic lactic acid bacteria (LAB) have been used in the anti-inflammation and anti-infection process of various diseases, including inflammatory bowel disease (IBD). Vitamin D receptor (VDR) plays an essential role in pathogenesis of IBD and infectious diseases. Previous studies have demonstrated that the human VDR gene is a key host factor to shape gut microbiome. Furthermore, intestinal epithelial VDR conditional knockout (VDRΔIEC) leads to dysbiosis. Low expressions of VDR is associated with impaired autophagy, accompanied by a reduction of ATG16L1 and LC3B. The purpose of this study is to investigate probiotic effects and mechanism in modulating the VDR-autophagy pathways. Methods Five LAB strains were isolated from Korean kimchi. Conditional medium (CM) from these strains was used to treat a human cell line HCT116 or intestinal organoids to measure the expression of VDR and autophagy. Mouse embryonic fibroblast (MEF) cells with or without VDR were used to investigate the dependence on the VDR signaling. To test the role of LAB in anti-inflammation, VDR+/+ organoids were treated with 121-CM before infection with Salmonella enterica serovar Enteritidis. In vivo, the role of LAB in regulating VDR-autophagy signaling was examined using LAB 121-CM orally administrated to VDRLoxp and VDRΔIEC mice. Results The LAB-CM-treated groups showed higher mRNA expression of VDR and its target genes cathelicidin compared with the control group. LAB treatment also enhanced expressions of Beclin-1 and ATG16L1 and changed the ratio of LC3B I and II, indicating the activation of autophagic responses. Furthermore, 121-CM treatment before Salmonella enterica serovar Enteritidis infection dramatically increased VDR and ATG16L1 and inhibited the inflammation. Administration of 121-CM to VDRLoxp and VDRΔIEC mice for 12 and 24 hours resulted in an increase of VDR and LC3B II:I ratio. Furthermore, we identified that probiotic proteins P40 and P75 in the LAB-CM contributed to the anti-inflammatory function by increasing VDR. Conclusions Probiotic LAB exert anti-inflammation activity and induces autophagy. These effects depend on the VDR expression. Our data highlight the beneficial effects of these 5 LAB strains isolated from food in anti-infection and anti-inflammation.


Sign in / Sign up

Export Citation Format

Share Document