scholarly journals Nutritional, Physico-Chemical and Mechanical Characterization of Vegetable Fibers to Develop Fiber-Based Gel Foods

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1017
Author(s):  
Ana Teresa Noguerol ◽  
Marta Igual ◽  
M. Jesús Pagán-Moreno

The aim of this research was to evaluate the nutritional and physico-chemical properties of six different vegetable fibers and explore the possibility of using them as a thickener or gelling agent in food. To determine the technological, nutritional and physical parameters, the following analyses were carried out: water-holding capacity, water retention capacity, swelling, fat absorption capacity, solubility, particle size, moisture, hygroscopicity, pH, water activity, bulk density, porosity, antioxidant activity, phenolic compounds and mineral content. Gels were prepared at concentrations from 4% to 7% at 5 °C and analyzed at 25 °C before and after treatment at 65 °C for 20 min. A back extrusion test, texture profile analysis and rheology were performed and the pH value, water content and color were analyzed. As a result, all the samples generally showed significant differences in all the tested parameters. Hydration properties were different in all the tested samples, but the high values found for chia flour and citrus fiber are highlighted in functional terms. Moreover, chia flour was a source of minerals with high Fe, Mn and Cu contents. In gels, significant differences were found in the textural and rheological properties among the samples, and also due to the heat treatment used (65 °C, 20 min). As a result, chia flour, citrus, potato and pea fibers showed more appropriate characteristics for thickening. Moreover, potato fiber at high concentrations and both combinations of fibers (pea, cane sugar and bamboo fiber and bamboo, psyllium and citric fiber) were more suitable for gelling agents to be used in food products.

Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 23
Author(s):  
Ana Teresa Noguerol ◽  
Marta Igual ◽  
Mª Jesús Pagán-Moreno

The aim of this research was to evaluate the nutritional and physicochemical properties of two combinations of vegetable fibres (FBPC: bamboo, Psyllium, and citric fibre, and FPESB: pea, cane sugar, and bamboo fibre) and the possibility of using them as a thickener or gelling agent in food. To determine the technological, nutritional, and physical parameters the following analyses were carried out: water holding capacity, water retention capacity, swelling, fat absorption capacity, solubility, particle size, moisture, hygroscopicity, water activity, bulk density, porosity, antioxidant activity, phenolic compounds, and minerals content. In addition, gels were prepared at concentrations 1 to 7% at 5 °C and analysed at 25 °C before and after a treatment at 65 °C for 20 min. Back extrusion test, pH, and colour were carried out. As results, both samples showed significant differences in all tested parameters. Hydration properties of FBPC were higher than in FPESB, but at the functional level, high values were found in FPESB. Moreover, FPESB was a source of minerals with an important content of Fe. In gels, significant differences in textural properties were found between samples and also due to the treatment used but further studies are needed to explore their use in the development of functional food products.


2018 ◽  
Vol 55 (5A) ◽  
pp. 100
Author(s):  
Lai Quoc Dat

Coconut flour, a significant byproduct of coconut milk and oil productions, is rich in fiber and protein. It can be utilized as an alternative material for cookies products. This paper focused on the functional properties of coconut flour and effect of coconut flour supplement on texture of dough and cookies. Results indicated that hydration properties and oil binding capacity (OBC) were significantly influenced by size of particles in coconut flour. With increase in size of coconut flour, water absorption capacity (WAC) and swelling capacity (SC) values increased; whereas, OBC value decreased. Maximum value of water retention capacity (WRC) was observed at 0.20–0.25 mm of particle size. Adding coconut flour into dough caused enhancement of hardness, cohesiveness and adhesiveness; whereas, insignificantly influenced on springiness. In addition, adding coconut flour led to decrease in spread ratio and increase in hardness of cookies. The results can be applied for substitution of coconut flour for wheat flour in cookies processing.  


2019 ◽  
Vol 32 (1) ◽  
pp. 1-8
Author(s):  
N. Sharma ◽  
T. Sinderpal

Physico-chemical properties are crucial characteristics of hydrocolloids as they decide the applicability of them. Rheology of system, flow behaviour and mechanical properties make hydrocolloids suitable for food industry. Modification of consistency or texture properties of functional polymers also controls their sensory characteristics, thereby they become significant essences such as thickener, gelling agents, foaming agent, texture modifier, viscosifier, emulsifier, stabilizer and binder. Industrial and pharmaceutical applications are also controlled by some suitable physico-chemical properties of hydrocolloids. The polysaccharide gum exudates constitute a architecturally distinct class of complex biomacromolecules having unique physico-chemical properties. Due to their good bio/tissue compatibility, non-toxicity, they are extensively used in the field of tissue engineering, drug delivery and wound healing. Chemical and molecular architecture of hydrocolloids in turn controls their physico-chemical and functional properties. Sterculia gum is a substituted rhamnogalacturonoglycan (pectic) type exudate gum used as suspending agent, gelling agents, emulsifier, bulk laxative, dental adhesive, drug delivery agent and wound healing agent. It exhibits high water retention capacity, high viscosity and least solubility. Solutions of sterculia gum are viscoelastic and thixotropic. Sterculia gum has been recommended as effective wound dressing material as it can form a intensely adhesive gel when dispersed in minimum ammount of water. Owing to wide applications and distinctive properties of sterculia gum, present work is an endeavor to summarize the molecular organization, chemical configuration and physico-chemical properties of sterculia gum and the factors affecting physico-chemical properties of sterculia gum.


2020 ◽  
Vol 71 (1) ◽  
pp. 69-77
Author(s):  
Rommel Crespo Gutiérrez ◽  
Marco Torres Uribe ◽  
Hernán Poblete Wilson

The present study consisted in determining the effects of a hygrothermal treatment on wood fibers from the Laureliopsis philippiana Looser species. The fibers were treated in autoclave at 150 °C for 90 minutes at a pressure of 430 kPa, which was generated during the evaporation process of the water in autoclave. Physical properties, color, and water retention capacity of hygrothermically treated and untreated fibers were analyzed. The chemical properties determined were the extractable amount in sodium hydroxide, toluene ethanol, hot and cold water, the cellulose, holocellulose and lignin contents, the pH value, the percentage of volatile and washable acids, and the buffer capacity. In hygrothermically treated fibers, a change of color was detected as well as a reduction in the water retention capacity and an increase in the percentage of extractable, cellulose, lignin and a decrease of holocellulose. Also an increase in acidity, amount of volatile and washable acids and buffer capacity were determined. Due to the chemical changes observed in the treated fibers, these would present advantages in the manufacture of fiberboards, facilitating the setting of the amino resins.


Author(s):  
Antoni Femenia ◽  
Susana Simal ◽  
Carme Garau Taberner ◽  
Carmen Rosselló

The effects of thermal processing on the physico-chemical properties of cell walls from pineapple flesh tissues have been investigated. Commercially canned pineapple exhibited a similar cell wall composition to the fresh pineapple sample, although a marked increase in cell wall solubility, from 21 to 34%, was detected. Dehydration promoted important changes in cell wall components and related functional properties, in particular when relatively high air-drying temperatures were applied. Thus, samples dried at 60ºC and, in particular at 80ºC, exhibited a larger solubilisation/degradation of pectic polysaccharides, probably due to either ?-elimination processes or enzyme-catalyzed degradation. On a fresh weight basis, about 14% and up to 39% of cell wall pectins were not recovered for the dried pineapple at 60ºC and 80ºC, respectively. Pectins from the latter samples also exhibited a notable decrease in the degree of esterification. These physico-chemical changes were probably reflected on the decrease of functional properties such as swelling (Sw), water retention capacity (WRC) and fat adsorption capacity (FAC). Nevertheless, fresh, canned and dehydrated pineapple at 40ºC exhibited higher WRC and FAC values, about 30 g water/g AIR and 15 g oil/g AIR, respectively. A gradual decrease of Sw, WRC and FAC values was observed for the functional properties of pineapple samples dried at 60 and 80ºC. Moreover, high air-drying temperatures also promoted a significant decrease in cell wall solubility. Therefore, the influence that these effects might have on the nutritional properties of cell walls or dietary fibre of thermally processed fruits such as canned and/or dehydrated pineapple needs to be considered.


2017 ◽  
Vol 38 (5) ◽  
pp. 3377
Author(s):  
Dorgival Morais de Lima Júnior ◽  
Francisco Fernando Ramos de Carvalho ◽  
Maria Inês Sucupira Maciel ◽  
Stela Antas Urbano ◽  
Juliana Paula Felipe de Oliveira ◽  
...  

Our objective was to evaluate leg tissue composition and physico-chemical quality parameters of sheep meat fed with increasing levels of annatto coproduct. 32 male uncastrated animals without a defined breed were randomized in four treatments (0, 100, 200 and 300 g kg-1 of annatto coproduct in the DM diet). After 78 days of confinement, the animals were slaughtered and body components were recorded. Reconstituted leg weight, total muscle weight, biceps weight and semitendinosus weight showed a negative linear behavior (P < 0.05) with the inclusion of the annatto coproduct in the diet. No effects of the inclusion of annatto coproduct (P > 0.05) were found for leg tissue composition (%), muscle:bone ratio, relative fat or leg muscle. Meat physico-chemical parameters (color, shear force, water retention capacity and cooking losses) were not affected by the inclusion of the annatto coproduct in the diet. The annatto coproduct can be included in up to 300 g kg-1 of dietary dry matter without negative effects to the leg tissue composition (%) and physical parameters of confined sheep meat.


2009 ◽  
Vol 69 (3) ◽  
pp. 969-977 ◽  
Author(s):  
AFU. Carvalho ◽  
MCC. Portela ◽  
MB. Sousa ◽  
FS. Martins ◽  
FC. Rocha ◽  
...  

This work aims to assess the potential of the green seaweed Ulva fasciata Delile as an alternative source of dietary fibre (DF). Total DF content was determined, some of its physico-chemical properties described and the physiological effects of U. fasciata meal on rats fed a hypercholesterolemic diet were investigated. U. fasciata may be considered a potential alternative source of DF with a total content of about 400 g.kg-1 (dry basis) and interesting physico-chemical properties: water retention capacity of 8.74 g/water.g-1 dry sample (seaweed meal) and 0.90 (seaweed carbohydrate extract), lipid adsorption capacity of 4.52 g/oil.g-1 dry sample (seaweed meal) and 5.70 (seaweed carbohydrate extract), intrinsic viscosity of 2.4 dl.g-1 (seaweed carbohydrate extract) and cation exchange capacity of 3.51 Eq.kg-1 (seaweed carbohydrate extract). The diet containing seaweed meal was able to keep rats' total cholesterol (TC) down without causing any undesirable increase in LDL-C fraction. No evidence of toxic and/or antinutritional components in the seaweed meal was detected. Rats showed a fecal volume much greater (13 g) than that fed on cellulose diet ( 7 g) (p < 0.05). These properties confer on the seaweed the potential to be used in food technology for the acquisition of low-calorie food and might be important in body weight control, reduction of blood TC and LDL-C as well as in prevention of gastrointestinal diseases.


2021 ◽  
Vol 6 (1) ◽  
pp. 23-26
Author(s):  
Maryana Mohamad Nor ◽  
Lukman Ismail ◽  
Siti Nuurul Huda Mohammad Azmin ◽  
Ikhmal Hisham Abdul Halim

Phoenic dactylifera (date) is a species of flowering plants in the family of Arecaceae. Date seeds are considered as a waste from many processing that produced plants pitted date, confectionery date syrup and date itself. Currently, the seeds are used mainly for animal feed in the cattle and chicken industry. In 2004, about 863,000 tonnes of date seeds are produced out of 6.9 million tonnes date. Tenderness is the major concern that affecting consumer acceptance of beef in meat industry. This study was carried out in order to investigate the effects of the bioactive compound extracted from date seed as a tenderizing agent in meat. Extraction of date seeds used a different method of extraction (Soxhlet and Maceration). The application of extracted on knuckle part of beef were performed and papain was used as a positive control and followed by the sensory evaluation. The analysis of cooked meat was performed in order to analyze the physico-chemical properties of date seeds extract. The result from the study revealed that the aqueous extract (maceration techniques) gave the best percentage of the total yield recovery with 28.44%. The physico-chemical properties of cooked meat showed the reducing of pH value after cooking. Meanwhile for the cooking yield, result showed that almost 86% of water losses during cooking for aqueous extract and positive control and 96% for negative control. According to the sensory evaluation of the cooked meat, scoring test and hedonic test were performed using One Way Anova. The result for texture is 6.10±2.1, juiceness is 5.87±1.76 and taste is 6.80±1.34. All attributes have no significant different at p <0.05 between aqueos extract, and positive control. A general acceptance shows that no significant different between aqueos extract (6.50±2.0) and positive control (7.13±1.98). The result suggested that the tenderization effect of date seed improved the textural properties of knuckle part meat and have potential for tenderization purpose in food industry.


Author(s):  
P.U. Singare ◽  
S.S. Dhabarde

The paper deals with monitoring of pollution arising due to agrochemicals and pesticides manufacturing industries located along the Dombivali industrial belt of Mumbai, India. The study was carried for the period of one year from June, 2012 to May, 2013 to study the level of toxic heavy metals and the physico-chemical properties of waste water effluents discharged from the above industries. The average concentration of Cu, Ni, Cr, Pb and Zn was found to be maximum of 29.86, 0.90, 1.16 and 1.19 ppm respectively in summer season, while average Fe concentration was maximum of 51.10 ppm in winter season. The average pH value of the effluent was found to be maximum of 12.95 in summer season, while average conductivity value was maximum of 21085 µmhos/cm in rainy season. The majority of physco-chemical parameters like alkalinity, hardness, salinity, chloride, cyanide, phosphate, total solid, BOD and COD content were found to be maximum in summer season having the average values of 1918, 186, 4, 11.20, 0.07, 81, 6391, 685 and 2556 ppm respectively. The average DO content was found to be low of 4.5 ppm in winter season. It was observed that the concentration level of majority of the toxic heavy metals and physico-chemical properties were above the tolerable limit set for inland surface water. The results of present study indicates that the existing situation if mishandled can cause irreparable ecological harm in the long term well masked by short term economic prosperity due to extensive industrial growth


2019 ◽  
Vol 6 (2) ◽  
pp. 181823 ◽  
Author(s):  
Guangyu Shi ◽  
Yizhu Qian ◽  
Fengzhi Tan ◽  
Weijie Cai ◽  
Yuan Li ◽  
...  

Oil/water separation is a field of high significance as it might efficiently resolve the contamination of industrial oily wastewater and other oil/water pollution. In this paper, an environmentally-friendly hydrophobic aerogel with high porosity and low density was successfully synthesized with renewable pomelo peels (PPs) as precursors. Typically, a series of sponge aerogels (HPSA-0, HPSA-1 and HPSA-2) were facilely prepared via high-speed dispersion, freeze-drying and silanization with methyltrimethoxysilane. Indeed, the physical properties of aerogel such as density and pore diameter could be tailored by different additives (filter paper fibre and polyvinyl alcohol). Hence, their physico-chemical properties including internal morphology and chemical structure were characterized in detail by Fourier transform infrared, Brunauer–Emmett–Teller, X-ray diffraction, scanning electron microscope, Thermal gravimetric analyzer (TG) etc. Moreover, the adsorption capacity was further determined and the results revealed that the PP-based aerogels presented excellent adsorption performance for a wide range of oil products and/or organic solvents (crude oil 49.8 g g −1 , soya bean oil 62.3 g g −1 , chloroform 71.3 g g −1 etc.). The corresponding cyclic tests showed the absorption capacity decreased slightly from 94.66% to 93.82% after 10 consecutive cycles, indicating a high recyclability.


Sign in / Sign up

Export Citation Format

Share Document