scholarly journals The Conserved Non-Coding Sequence 2 (CNS2) Enhances CD69 Transcription through Cooperation between the Transcription Factors Oct1 and RUNX1

Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 651
Author(s):  
Miguel G. Fontela ◽  
Laura Notario ◽  
Elisenda Alari-Pahissa ◽  
Elena Lorente ◽  
Pilar Lauzurica

The immune regulatory receptor CD69 is expressed upon activation in all types of leukocytes and is strongly regulated at the transcriptional level. We previously described that, in addition to the CD69 promoter, there are four conserved noncoding regions (CNS1-4) upstream of the CD69 promoter. Furthermore, we proposed that CNS2 is the main enhancer of CD69 transcription. In the present study, we mapped the transcription factor (TF) binding sites (TFBS) from ChIP-seq databases within CNS2. Through luciferase reporter assays, we defined a ~60 bp sequence that acts as the minimum enhancer core of mouse CNS2, which includes the Oct1 TFBS. This enhancer core establishes cooperative interactions with the 3′ and 5′ flanking regions, which contain RUNX1 BS. In agreement with the luciferase reporter data, the inhibition of RUNX1 and Oct1 TF expression by siRNA suggests that they synergistically enhance endogenous CD69 gene transcription. In summary, we describe an enhancer core containing RUNX1 and Oct1 BS that is important for the activity of the most potent CD69 gene transcription enhancer.

2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Xuexiu Zhang ◽  
Jianning Yao ◽  
Haoling Shi ◽  
Bing Gao ◽  
Haining Zhou ◽  
...  

AbstractCircular RNAs (circRNAs) have been reported to play crucial roles in the progression of various cancers, including colorectal cancer (CRC). SP1 (Sp1 transcription factor) is a well-recognized oncogene in CRC and is deemed to trigger the Wnt/β-catenin pathway. The present study was designed to investigate the role of circRNAs which shared the same pre-mRNA with SP1 in CRC cells. We identified that hsa_circ_0026628 (circ_0026628), a circular RNA that originated from SP1 pre-mRNA, was upregulated in CRC cells. Sanger sequencing and agarose gel electrophoresis verified the circular characteristic of circ_0026628. Functional assays including CCK-8, colony formation, transwell, immunofluorescence staining, and sphere formation assay revealed the function of circ_0026628. RNA pull-down and mass spectrometry disclosed the proteins interacting with circ_0026628. Mechanistic assays including RIP, RNA pull-down, CoIP, ChIP, and luciferase reporter assays demonstrated the interplays between molecules. The results depicted that circ_0026628 functioned as a contributor to CRC cell proliferation, migration, EMT, and stemness. Mechanistically, circ_0026628 served as the endogenous sponge of miR-346 and FUS to elevate SP1 expression at the post-transcriptional level, thus strengthening the interaction between SP1 and β-catenin to activate the Wnt/β-catenin pathway. In turn, the downstream gene of Wnt/β-catenin signaling, SOX2 (SRY-box transcription factor 2), transcriptionally activated SP1 and therefore boosted circ_0026628 level. On the whole, SOX2-induced circ_0026628 sponged miR-346 and recruited FUS protein to augment SP1, triggering the downstream Wnt/β-catenin pathway to facilitate CRC progression.


2001 ◽  
Vol 7 (2) ◽  
pp. 187-200 ◽  
Author(s):  
TAE HO LEE ◽  
JERRY PELLETIER

The Wilms’ tumor suppressor gene, wt1, encodes a zinc finger transcription factor that can regulate gene expression. It plays an essential role in tumorigenesis, kidney differentiation, and urogenital development. To identify WT1 downstream targets, gene expression profiling was conducted using a cDNA array hybridization approach. We confirm herein that the human vitamin D receptor (VDR), a ligand-activated transcription factor, is a WT1 downstream target. Nuclear run on experiments demonstrated that the effect of WT1 on VDR expression is at the transcriptional level. Transient transfection assays, deletion mutagenesis, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays suggest that, although WT1 is presented with a possibility of three binding sites within the VDR promoter, activation of the human VDR gene appears to occur through a single site. This site differs from a previously identified WT1-responsive site in the murine VDR promoter (Maurer U, Jehan F, Englert C, Hübinger G, Weidmann E, DeLucas HF, and Bergmann L. J Biol Chem 276: 3727–3732, 2001). We also show that the products of a Denys-Drash syndrome allele of wt1 inhibit WT1-mediated transactivation of the human VDR promoter. Our results indicate that the human VDR gene is a downstream target of WT1 and may be regulated differently than its murine counterpart.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhaosheng Chen ◽  
Honglei Wu ◽  
Zhen Zhang ◽  
Guangchun Li ◽  
Bin Liu

Abstract Background Gastric cancer (GC) is a common-sighted cancer which is hard to cure over the world. Substantial researches revealed that long non-coding RNAs (lncRNAs) were fundamental regulators in the process of cancers. Nevertheless, the biological function of LINC00511 and how LINC00511 was involved in the regulatory system in GC remained unclear. Methods RIP assays and luciferase reporter assays were performed to illustrate combination between LINC00511 and miR-625-5p. Loss-of-function assays were applied for identifying LINC00511 function in GC. Results In our study, LINC00511 was discovered significantly high in expression in GC tissues and cell lines. Moreover, LINC00511 showed a strong expression in I/II and III/IV stage. Knockdown of LINC00511 could inhibit the cell proliferation while enhanced cell apoptosis rate in GC. We used nuclear–cytoplasmic fractionation to judge the subcellular localization of LINC00511. Furthermore, miR-625-5p was found to have binding sites for LINC00511 and negatively regulated by LINC00511. Overexpression of miR-625-5p repressed the course of GC. And knockdown of miR-625-5p could recover the effects of LINC00511 silence. Besides, NFIX was discovered as a downstream target of miR-625-5p and overexpression of NFIX could offset the influence of LINC00511 silence. The results of vivo studies manifested that down-regulation of LINC00511 could reduce the Ki67 expression and NFIX while lifted the expression of miR-625-5p. Conclusion Overall, the results from our study demonstrated that LINC00511 could function as a tumor promoter by targeting miR-625-5p NFIX axis, suggesting LINC00511 could be considered as a target for GC treatment.


Author(s):  
Baochi Ou ◽  
Hongze Sun ◽  
Jingkun Zhao ◽  
Zhuoqing Xu ◽  
Yuan Liu ◽  
...  

Abstract Background Polo-like kinase 3 (PLK3) has been documented as a tumor suppressor in several types of malignancies. However, the role of PLK3 in colorectal cancer (CRC) progression and glucose metabolism remains to be known. Methods The expression of PLK3 in CRC tissues was determined by immunohistochemistry. Cells proliferation was examined by EdU, CCK-8 and in vivo analyses. Glucose metabolism was assessed by detecting lactate production, glucose uptake, mitochondrial respiration, extracellular acidification rate, oxygen consumption rate and ATP production. Chromatin immunoprecipitation, luciferase reporter assays and co-immunoprecipitation were performed to explore the signaling pathway. Specific targeting by miRNAs was determined by luciferase reporter assays and correlation with target protein expression. Results PLK3 was significantly downregulated in CRC tissues and its low expression was correlated with worse prognosis of patients. In vitro and in vivo experiments revealed that PLK3 contributed to growth inhibition of CRC cells. Furthermore, we demonstrated that PLK3 impeded glucose metabolism via targeting Hexokinase 2 (HK2) expression. Mechanically, PLK3 bound to Heat shock protein 90 (HSP90) and facilitated its degradation, which led to a significant decrease of phosphorylated STAT3. The downregulation of p-STAT3 further suppressed the transcriptional activation of HK2. Moreover, our investigations showed that PLK3 was directly targeted by miR-106b at post-transcriptional level in CRC cells. Conclusion This study suggests that PLK3 inhibits glucose metabolism by targeting HSP90/STAT3/HK2 signaling and PLK3 may serve as a potential therapeutic target in colorectal cancer.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 217 ◽  
Author(s):  
Na Zhang ◽  
Tinghui Jiang ◽  
Yitao Wang ◽  
Lanyue Hu ◽  
Youquan Bu

BTG4 is the last cloned and poorly studied member of BTG/Tob family. Studies have suggested that BTG4 is critical for the degradation of maternal mRNAs in mice during the process of maternal-to-zygotic transition, and downregulated in cancers, such as gastric cancer. However, the regulatory mechanism of BTG4 and its function in cancers remain elusive. In this study, we have for the first time identified the promoter region of the human BTG4 gene. Serial luciferase reporter assay demonstrated that the core promoter of BTG4 is mainly located within the 388 bp region near its transcription initiation site. Transcription factor binding site analysis revealed that the BTG4 promoter contains binding sites for canonical transcription factors, such as Sp1, whereas its first intron contains two overlapped consensus p53 binding sites. However, overexpression of Sp1 has negligible effects on BTG4 promoter activity, and site-directed mutagenesis assay further suggested that Sp1 is not a critical transcription factor for the transcriptional regulation of BTG4. Of note, luciferase assay revealed that one of the intronic p53 binding sites is highly responsive to p53. Both exogenous p53 overexpression and adriamycin-mediated endogenous p53 activation result in the transcriptional upregulation of BTG4. In addition, BTG4 is downregulated in lung and colorectal cancers, and overexpression of BTG4 inhibits cell growth and induces apoptosis in cancer cells. Taken together, our results strongly suggest that BTG4 is a novel p53-regulated gene and probably functions as a tumor suppressor in lung and colorectal cancers.


2006 ◽  
Vol 37 (2) ◽  
pp. 341-352 ◽  
Author(s):  
Takanobu Sato ◽  
Kousuke Kitahara ◽  
Takao Susa ◽  
Takako Kato ◽  
Yukio Kato

Recently, we have reported that a Prophet of Pit-1 homeodomain factor, Prop-1, is a novel transcription factor for the porcine follicle-stimulating hormone β subunit (FSHβ) gene. This study subsequently aimed to examine the role of Prop-1 in the gene expression of two other porcine gonadotropin subunits, pituitary glycoprotein hormone α subunit (αGSU), and luteinizing hormone β subunit (LHβ). A series of deletion mutants of the porcine αGSU (up to −1059 bp) and LHβ (up to −1277 bp) promoters were constructed in the reporter vector, fused with the secreted alkaline phosphatase gene (pSEAP2-Basic). Transient transfection studies using GH3 cells were carried out to estimate the activation of the porcine αGSU and LHβ promoters by Prop-1, which was found to activate the αGSU promoter of −1059/+12 bp up to 11.7-fold but not the LHβ promoter. Electrophoretic mobility shift assay and DNase I footprinting analysis revealed that Prop-1 binds to six positions, −1038/−1026, −942/−928, −495/−479, −338/−326, −153/−146, and −131/−124 bp, that comprise the A/T cluster. Oligonucleotides of six Prop-1 binding sites were directly connected to the minimum promoter of αGSU, fused in the pSEAP2-Basic vector, followed by transfecting GH3 cells to determine the cis-acting activity. Finally, we concluded that at least five Prop-1 binding sites are the cis-acting elements for αGSU gene expression. The present results revealed a notable feature of the proximal region, where three Prop-1-binding sites are close to and/or overlap the pituitary glycoprotein hormone basal element, GATA-binding element, and junctional regulatory element. To our knowledge, this is the first demonstration of the role of Prop-1 in the regulation of αGSU gene expression. These results, taken together with our previous finding that Prop-1 is a transcription factor for FSHβ gene, confirm that Prop-1 modulates the synthesis of FSH at the transcriptional level. On the other hand, the defects of Prop-1 are known to cause dwarfism and combined pituitary hormone deficiency accompanying hypogonadism. Accordingly, the present observations provide a novel view to understand the hypogonadism caused by Prop-1 defects at the molecular level through the regulatory mechanism of αGSU and FSHβ gene expressions.


2000 ◽  
Vol 74 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Christian Schwartz ◽  
Philippe Catez ◽  
Olivier Rohr ◽  
Dominique Lecestre ◽  
Dominique Aunis ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infects the central nervous system (CNS) and plays a direct role in the pathogenesis of AIDS dementia. However, mechanisms underlying HIV-1 gene expression in the CNS are poorly understood. The importance of CCAAT/enhancer binding proteins (C/EBP) for HIV-1 expression in cells of the immune system has been recently reported. In this study, we have examined the role and the molecular mechanisms by which proteins of the C/EBP family regulate HIV-1 gene transcription in human brain cells. We found that NF-IL6 acts as a potent activator of the long terminal repeat (LTR)-driven transcription in microglial and oligodendroglioma cells. In contrast, C/EBPγ inhibits NF-IL6-induced activation. Consistent with previous data, our transient expression results show cell-type-specific NF-IL6-mediated transactivation. In glial cells, full activation needs the presence of the C/EBP binding sites; however, NF-IL6 is still able to function via the minimal −40/+80 region. In microglial cells, C/EBP sites are not essential, since NF-IL6 acts through the −68/+80 LTR region, containing two binding sites for the transcription factor Sp1. Moreover, we show that functional interactions between NF-IL6 and Sp1 lead to synergistic transcriptional activation of the LTR in oligodendroglioma and to mutual repression in microglial cells. We further demonstrate that NF-IL6 physically interacts with the nuclear receptor chicken ovalbumin upstream promoter transcription factor (COUP-TF), via its DNA binding domain, in vitro and in cells, which results in mutual transcriptional repression. These findings reveal how the interplay of NF-IL6 and C/EBPγ, together with Sp1 and COUP-TF, regulates HIV-1 gene transcription in brain cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4214-4214
Author(s):  
Richard Dahl ◽  
Kristin S. Owens

Abstract Gfi-1 −/− mice generate abnormal immature myeloid cells exhibiting characteristics of both monocytes and granulocytes. One of Gfi-1’s critical functions is to downregulate monocyte specific genes in order for granulocytes to develop properly. Since the transcription factors C/EBP alpha and C/EBP epsilon are needed for granulocyte development we hypothesized that these factors may regulate Gfi-1 expression. The Gfi-1 promoter contains several putative C/EBP binding sites and we show by electrophoretic mobility shift and chromatin immunoprecipitation that C/EBP family members can bind to some of these sites. However we were unable to see activation of the Gfi-1 promoter by C/EBP proteins in transient transfection reporter assays. Other groups have shown that C/EBP proteins can synergize with the transcription factor c-myb. We observed that the Gfi-1 promoter contains sites for the hematopoietic transcription factor c-myb. Sevral of these c-myb binding sites are adjacent to C/EBP binding sites. In reporter assays in non-hematopoietic cells c-myb activated the Gfi-1 promoter by itself and this activity was enhanced when we included either C/EBP alpha or epsilon in the transfection. Our data suggests that C/EBP proteins and c-myb regulate the transcription of Gfi-1 in myeloid cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4119-4119
Author(s):  
Zhu Liuluan ◽  
Meng Qingcai ◽  
Liang Shuntao ◽  
Li Guoli ◽  
Hong Zheng ◽  
...  

Abstract Background: IL-1β secretion is tightly controlled at the transcriptional and post-translational levels. The NLRP3 inflammasome, a multiprotein complex composed of NOD-like receptor-containing pyrin 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and pro-caspase-1, plays a critical role in IL-1β maturation at the latter stage. NLRP3 expression is a limiting factor for inflammasome activation, and therefore, negative regulation of this factor is necessary to control excessive IL-1β production during sepsis. Previously, we showed that the transcriptional repressor Gfi1 inhibits pro-IL-1β transcription and the IL-1β level is significantly higher in serum of LPS-treated Gfi1-/- than wild-type (WT) mice. The present study revealed that Gfi1 regulates IL-1β secretion through inhibiting NLRP3 inflammasome activation in macrophages. Methods and Results: Bone marrow-derived macrophages (BMDM) from WT and Gfi1-/- mice were primed with LPS and stimulated with ATP. Compared with WT cells, those lacking Gfi1 induced a significant increase in IL-1β in the culture medium (Figure 1A). Western blot disclosed moderate elevation of pro-IL-1β, along with a more dramatic increase in mature IL-1β and cleaved caspase-1 in Gfi1-deficient BMDMs, suggesting that Gfi1 inhibits IL-1β maturation. Consistently, real-time PCR findings showed increased NLRP3 mRNA in Gfi1-deficient macrophages (Figure 1B), implying that Gfi1 affects expression of NLRP3 at the transcriptional level. To determine the mechanism underlying the regulatory activity of Gfi1 on NLRP3 expression, the mouse NLRP3 promoter was screened, leading to the identification of a putative binding site for Gfi1 (GRE1, located at nt -1210/-1207). In dual luciferase reporter assays performed with WT and GRE1 mutant promoters, the inhibitory effect of Gfi1 on NLRP3 transcription was significantly reversed upon GRE1 mutation. EMSA and ChIP assays performed to further establish the function of GRE1 (Figure 2A) validated the in vivo and in vitro interactions between Gfi1 and the GRE1 element, and consequently, a direct transcriptional repression effect on the NLRP3 gene. NF-κB p65 activates NLRP3 transcription through binding two elements in its promoter region, and Gfi1 interferes with activity through direct interactions with p65. Accordingly, we mutated the binding elements of p65 (NRE1 and NRE2) in the NLRP3 promoter. Dual luciferase reporter assays showed that mutation of NRE1 almost entirely suppressed activation of p65 while mutation of NRE2 exerted no effect, indicating that NF-κB p65 specifically interacts with NRE1 for the activation in this system. EMSA studies further confirmed that Gfi1 strongly competes for binding of NF-κB p65 with NRE1, antagonizing interactions between p65 and the NLRP3 promoter (Figure 2B). Maximum suppression of NLRP3 promoter activity by Gfi1 was observed with the NLRP3 promoter reporter containing a NRE1/ GRE1 double mutant (Figure 2C). Conclusions: In summary, we propose a “dual repression model” mechanism of Gfi1 in the regulation of NLRP3 expression. Once activated by LPS, NF-κB promotes NLRP3 expression by binding to the cis-element, NRE1, in turn, promoting assembly of the NLRP3 inflammasome to generate biologically active IL-1β. Meanwhile, Gfi1 is induced to control LPS-induced inflammation. Gfi1 directly inhibits NLRP3 transcription by binding the GRE1 site or blocks NF-κB-mediated NLRP3 transcription via interactions with NF-κB p65. Both modes of action lead to suppression of IL-1β release from macrophages in response to LPS stimulation. The present data, along with previous reports showing that Gfi1 restricts pro-IL-1β transcription, indicate that Gfi1 plays pivotal roles in regulating IL-1β production at both transcriptional and post-translational levels. These findings provide novel evidence that should aid in the development of future anti-inflammatory therapies to prevent IL-1β-induced tissue injury and mortality during sepsis. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Tiantian Su ◽  
Hui Liu ◽  
Di Zhang ◽  
Guojin Xu ◽  
Jiali Liu ◽  
...  

Abstract Urethral hypoplasia, including failure of urethral tube closure, is one of the common phenotypes observed in hereditary human disorders, the mechanism of which remains unclear. The present study was thus designed to study the expression, functions, and related mechanisms of the LIM homeobox transcription factor Isl1 throughout mouse urethral development. Results showed that Isl1 was highly expressed in urethral epithelial cells and mesenchymal cells of the genital tubercle (GT). Functional studies were carried out by utilizing the tamoxifen-inducible Isl1-knockout mouse model. Histological and morphological results indicated that Isl1 deletion caused urethral hypoplasia and inhibited maturation of the complex urethral epithelium. In addition, we show that Isl1-deleted mice failed to maintain the progenitor cell population required for renewal of urethral epithelium during tubular morphogenesis and exhibited significantly increased cell death within the urethra. Dual-Luciferase reporter assays and yeast one-hybrid assays showed that ISL1 was essential for normal urethral development by directly targeting the Shh gene. Collectively, results presented here demonstrated that Isl1 plays a crucial role in mouse urethral development, thus increasing our potential for understanding the mechanistic basis of hereditary urethral hypoplasia.


Sign in / Sign up

Export Citation Format

Share Document