scholarly journals A Semi-Systematic Review of Capillary Irrigation: The Benefits, Limitations, and Opportunities

Horticulturae ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 23 ◽  
Author(s):  
Niranjani Semananda ◽  
James Ward ◽  
Baden Myers

Capillary irrigation systems have been investigated for some years as a means to deliver water to plants in container gardening. This review paper identifies that traditional capillary irrigation systems such as capillary wicks, capillary mats, and ebb and flow systems have been shown to produce higher crop yields and use less water than conventional irrigation methods. In addition, capillary irrigation offers an added advantage by reducing the volume of potentially harmful leachate into surrounding soil environments. However, these systems are basically limited to small pot sizes and are widely used for growing ornamental and nursery plants in glasshouse conditions. Further, the cost and complexity of Negative Pressure Difference Irrigation may have limited its practical use. Conversely, wicking beds (WBs) are low-tech and water-efficient systems which can be used for growing plants with different rooting depths. Irrespective of the wide acceptance of WBs among the growing community, this review recognises that there is no published research providing design recommendations for WBs and their expected performance relative to other irrigation systems. Therefore, some potential advantages of WBs are noted in the context of capillary irrigation research; however, a substantial knowledge gap exists relating to the optimised design and use of WBs.

2020 ◽  
Author(s):  
Timothy Foster ◽  
Roshan Adhikari ◽  
Subash Adhikari ◽  
Anton Urfels ◽  
Timothy Krupnik

<p>In many parts of South Asia, electricity for groundwater pumping has been directly or indirectly subsidised by governments to support intensification of agriculture. In contrast, farmers in large portions of the Eastern Indo-Gangetic Plains (EIGP) remain largely dependent on unsubsidised diesel or petrol power for irrigation pumping. Combined with a lack of comprehensive aquifer mapping, high energy costs of pumping limit the ability of farmers to utilise available groundwater resources. This increases exposure to farm production risks, in particular drought and precipitation variability.</p><p>To date, research to address these challenges has largely focused on efforts to enhance rural electrification or introduce renewable energy-based pumping systems that remain out of reach of many poor smallholders. However, there has been comparatively little focus on understanding opportunities to improve the cost-effectiveness and performance of the thousands of existing diesel-pump irrigation systems already in use in the EIGP. Here, we present findings from a recent survey of over 432 farmer households in the mid-western Terai region of Nepal – an important area of diesel-pump irrigation in the EIGP. Our survey provides information about key socio-economic, technological and behavioral aspects of diesel pump irrigation systems currently in operation, along with quantitative evidence about their impacts on agricultural productivity and profitability.</p><p>Survey results indicate that groundwater irrigation costs vary significantly between individual farmers. Farmers faced with higher costs of groundwater access irrigate their crops less frequently, which in turn results in lower crop yields and reduced overall farm profitability. Our data indicate that pumpset fuel efficiency may be a key driver of variability in irrigation costs, with large horsepower (>5 HP) Indian-made pumpsets appearing to have significantly higher fuel consumption rates (1.10 litre/hour and $18,000) and investments costs than alternative smaller horsepower (<5 HP) Chinese-made pumpsets (0.76 litre/hr and $30,000). Despite this, the majority of farmers continue to favour Indian pumpsets due to their higher reliability and well-established supply chains. Variability in access costs is also related to differences in capacity of farmers to invest in their own pumping systems. Pumpset rental rates in the region increase irrigation costs by a factor of 3-4 relative to the cost of fuel alone. Furthermore, rental rates typically are structured on a per-hourly basis, further exacerbating access costs for farmers with low yielding wells or whose irrigation management practices are less efficient.</p><p>Our findings highlight that opportunities exist to reduce costs of groundwater use in existing diesel irrigation systems through improved access to more energy efficient pumping systems. This would have positive near-term impacts on agricultural productivity and rural livelihoods, in particular helping farmers to more effectively buffer crops against monsoonal variability. Such near-term improvements in diesel pump irrigation systems would also play an important role in supporting agriculture in the EIGP to transition to more sustainable and clean sources of energy for irrigation pumping. However, efforts to enhance irrigation access must also occur alongside improvements to aquifer monitoring and governance of extraction, in order to minimise risks of future depletion such as observed in other parts of the IGP.</p>


2020 ◽  
Vol 6 (2) ◽  
pp. 50-58
Author(s):  
Matluba Muxammadiyeva ◽  
◽  
Iftixor Ergashev

If we look at the existing irrigation methods used today in the country, then they are divided into: ground, rainfall, underground or underground, drip and spray. Basically, they are transferred to the irrigation field in two forms: through gravity and pressure irrigation systems. Naturally, a gravity irrigation system is economically more expensive than a low pressure irrigation system. However, from a performance appraisal stand point, pressure irrigation methods are less efficient and have serious disadvantages


2021 ◽  
Vol 13 (10) ◽  
pp. 5599
Author(s):  
Eko Supriyanto ◽  
Jayan Sentanuhady ◽  
Ariyana Dwiputra ◽  
Ari Permana ◽  
Muhammad Akhsin Muflikhun

Biodiesel has caught the attention of many researchers because it has great potential to be a sustainable fossil fuel substitute. Biodiesel has a non-toxic and renewable nature and has been proven to emit less environmentally harmful emissions such as hydrocarbons (HC), and carbon monoxide (CO) as smoke particles during combustion. Problems related to global warming caused by greenhouse gas (GHG) emissions could also be solved by utilizing biodiesel as a daily energy source. However, the expensive cost of biodiesel production, mainly because of the cost of natural feedstock, hinders the potential of biodiesel commercialization. The selection of natural sources of biodiesel should be made with observations from economic, agricultural, and technical perspectives to obtain one feasible biodiesel with superior characteristics. This review paper presents a detailed overview of various natural sources, their physicochemical properties, the performance, emission, and combustion characteristics of biodiesel when used in a diesel engine. The recent progress in studies about natural feedstocks and manufacturing methods used in biodiesel production were evaluated in detail. Finally, the findings of the present work reveal that transesterification is currently the most superior and commonly used biodiesel production method compared to other methods available.


2019 ◽  
Vol 4 (1) ◽  
pp. 2-14
Author(s):  
HANS BLEUMINK

Historical surface irrigation of pastures in the Dutch province of Noord-Brabant: visible traces of a failed experiment In the second half of the 19th century, some major changes occurred in the water management of the eastern and southern provinces of the Netherlands. Unlike the low-lying western parts of the Netherlands which were characterised by polders and had a long history of formal water boards, the higher eastern and southern parts of the Netherlands were characterized by brook systems and sandy soils, and had no centralised water boards until 1850. From the 1850s onward, water boards were introduced in these higher regions as well, and agronomical scientists and organisations like the Nederlandse Heidemaatschappij endeavoured for the modernisation of agricultural water management. One of their priorities was the introduction of modern forms of surface irrigation of pastures, in order to increase crop yields. In various places modern irrigation systems were constructed. From the 1900s onward, these systems were abandoned due to the introduction of new chemical fertilizers, among others. This article describes the construction and abandonment of one of these modern irrigation systems that was located in Liempde, in the province of Noord-Brabant. The local farmers were not interested in the new technique, and within a few years the system was transformed in a poplar plantation. Nowadays, the area is part of a nature reserve. Nonetheless, the global layout of the irrigation system is still visible.


2015 ◽  
Vol 19 (7) ◽  
pp. 3073-3091 ◽  
Author(s):  
J. Jägermeyr ◽  
D. Gerten ◽  
J. Heinke ◽  
S. Schaphoff ◽  
M. Kummu ◽  
...  

Abstract. Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatiotemporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a process-based representation of the three major irrigation systems (surface, sprinkler, and drip) into a bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded world map of irrigation efficiencies that are calculated in direct linkage to differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with the lowest values (< 30 %) in south Asia and sub-Saharan Africa and the highest values (> 60 %) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2469 km3 (2004–2009 average); irrigation water consumption is calculated to be 1257 km3, of which 608 km3 are non-beneficially consumed, i.e., lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76 %, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15 %, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of irrigation systems while providing a framework for assessing potential future transitions in these systems. In this paper, presented opportunities associated with irrigation improvements are significant and suggest that they should be considered an important means on the way to sustainable food security.


Author(s):  
Farhan Yasin Hamed Farhan Yasin Hamed ◽  
Lydia Mikhailovna Vasilyeva ◽  
Natalia Viktorovna Sudakova ◽  
Ali Attala Muheisin ◽  
Adelia Zakirovna Anokhina

The use of the crop rotation method in fish farming makes it possible to increase fish productivity and crop yields in ponds. In the countries of the Middle East, in recent years, the Aqua Crop rotation practice has been developing, in particular, the consistent cultivation of fish and rice in fish ponds, which allows eliminating the contradictions between these crops and increasing production efficiency. In Iraq, an experiment was carried out on the variable cultivation of rice and carp in fish ponds for four years, with the aim of introducing this practice into the country’s agriculture. Four ponds, each with an area of 7.5 hectares, were involved. The research was carried out in two variants: in experiment No.1 rice was grown in the first year, fish in the second, then rice again and in the fourth year — fish, in the second experiment, on the contrary, at the beginning of the fish, then rice, etc. The fish-breeding season lasted 9 months (March to November). Fish-breeding indicators were studied in detail: survival rate, feed costs, fish productivity, the results of rice cultivation were judged by yield. In addition, indicators of economic efficiency were determined according to a simplified scheme. The results indicate that, in general, fish-breeding indicators turned out to be higher when growing fish in ponds after rice, so fish productivity increased by almost 30% with an average value of 3.9 t/ha, feed costs decreased, while rice yield increased by 15–16% and averaged 3.6 t/ha. The best fish-breeding indicators were obtained in the second experiment after rice was grown in the ponds for two years. Economic calculations confirmed the advantages of using the aquacrop rotation practice, so in the second experiment the cost of marketable fish decreased by 10%, and the profitability increased by almost 30%.


2020 ◽  
Vol 6 (2) ◽  
pp. 1-18
Author(s):  
Abdullah Azami ◽  
◽  
Jay Sagin ◽  
Sayed Hashmat Sadat ◽  
Hejratullah Hejran ◽  
...  

In Afghanistan, water is mostly used for agricultural purposes. The water supply chain requires updating to ensure its sustainability. Different irrigation methods – such as surface water based irrigation (via canals), groundwater based irrigation, and the Karez irrigation system – are applied across the country. Considering the compatibility of the Karez system with the environment, it can be deemed the most effective irrigation scheme, as it allows collecting a significant amount of groundwater and conveying it to land surface via sub-horizontal tunnels using gravity. This article analyzes Afghanistan’s Karez irrigation systems currently feeding water to over 170,000 ha of farmland with a potential to expand and become a component of sustainable water supply chain.


Author(s):  
S.D. Isaeva ◽  
A.L. Buber

В статье проведен анализ состояния оросительных, в том числе рисовых, систем Краснодарского края за 20 лет. Рассмотрены основные способы полива, динамика орошаемой площади, суммарной водоподачи, оросительные нормы, объем коллекторно-дренажного стока и др. Выявлено сокращение поливаемых земель в Краснодарском крае, снижение суммарного водозабора и оросительных норм. Выполнен аналитический прогноз рассмотренных показателей на перспективу до 2030 г. и предложены меры по развитию и повышению эффективности орошения в Краснодарском крае, прежде всего за счет строгого планирования водопользования на основе цифровых технологий и математического моделирования.Сondition of irrigation systems analysis was carried out in the Krasnodar Territory. Irrigation methods, dynamics of irrigated area, total water supply, irrigation norms are considered. Reduction of irrigated land, total water withdrawal and irrigation norms has been established in the Krasnodar Territory. An analytical forecast of the considered indicators for the future until 2030 has been completed. Measures to develop and improve irrigation efficiency are proposed. Above all, this is rigorous water use planning based on digital technology and mathematical modeling.


2013 ◽  
Vol 14 (3) ◽  
pp. 414-420 ◽  
Author(s):  
Marta García-Mollá ◽  
Mar Ortega-Reig ◽  
Carles Sanchis-Ibor ◽  
Llorenç Avellà-Reus

The modernization of the irrigation systems has been the main strategy followed by the regional administration of the Valencia Region to cope with the structural water deficit of the region, which has been particularly severe during the last three decades. These policies have been oriented to the substitution of gravity irrigation systems for drip technology. The technological change has involved an important investment effort, developed by different public administrations and also the farmers and water users' associations (WUAs). This transformation, has also involved a change in the structure of costs of the WUAs. This paper analyzes the changes in costs and tariffs of irrigation after the important investments made in the modernization of irrigation. The effects of subsidies on the percentage of the cost recovery in the services of water for irrigation are also considered. All of them have developed modernization projects in the recent years. It can be concluded that conflict between two objectives proposed by the Water Framework Directive may exist. On the one hand, significant reductions of water supply are observed; meanwhile, on the other hand, the cost recovery percentage diminishes significantly.


Author(s):  
Maira Bruck ◽  
Navid Goudarzi ◽  
Peter Sandborn

The cost of energy is an increasingly important issue in the world as renewable energy resources are growing in demand. Performance-based energy contracts are designed to keep the price of energy as low as possible while controlling the risk for both parties (i.e., the Buyer and the Seller). Price and risk are often balanced using complex Power Purchase Agreements (PPAs). Since wind is not a constant supply source, to keep risk low, wind PPAs contain clauses that require the purchase and sale of energy to fall within reasonable limits. However, the existence of those limits also creates pressure on prices causing increases in the Levelized Cost of Energy (LCOE). Depending on the variation in capacity factor (CF), the power generator (the Seller) may find that the limitations on power purchasing given by the utility (the Buyer) are not favorable and will result in higher costs of energy than predicted. Existing cost models do not take into account energy purchase limitations or variations in energy production when calculating an LCOE. A new cost model is developed to evaluate the price of electricity from wind energy under a PPA contract. This study develops a method that an energy Seller can use to negotiate delivery penalties within their PPA. This model has been tested on a controlled wind farm and with real wind farm data. The results show that LCOE depends on the limitations on energy purchase within a PPA contract as well as the expected performance characteristics associated with wind farms.


Sign in / Sign up

Export Citation Format

Share Document