scholarly journals Caenorhabditis elegans to Model the Capacity of Ascorbic Acid to Reduce Acute Nitrite Toxicity under Different Feed Conditions: Multivariate Analytics on Behavioral Imaging

Author(s):  
Samuel Verdu ◽  
Alberto J. Perez ◽  
Conrado Carrascosa ◽  
José M. Barat ◽  
Pau Talens ◽  
...  

Nitrocompounds are present in the environment and human diet and form part of vegetables and processed meat products as additives. These compounds are related to negative impacts on human and animal health. The protective effect of ascorbic acid has been demonstrated by some biological systems as regards several nitrocompounds. This work focused on studying the possibility of modeling this effect on nitrite toxicity with the model Caenorhabditis elegans. The three factors studied in this work were ascorbic acid concentration, nitrite exposure concentration, and presence/absence of food. The protective effect was evaluated by scoring lethality and its impact on behavior by means of multivariate statistical methods and imaging analytics. The effects of nitrite and the influence of food availability were evidenced. Apart from increasing lethality, nitrite had disruption effects on movements. All the observed symptoms reduced when ascorbic acid was administered, and it diminished lethality in all cases. Ascorbic acid maintained nematodes’ postural capacities. The results suggest that nitrites’ nonspecific toxicity in C. elegans can be mitigated by ascorbic acid, as previously evidenced in other biological systems. Thus, our results reveal the ability of C. elegans to reproduce the known protective effect of ascorbic acid against nitrite.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Haifeng Li ◽  
Ruona Shi ◽  
Fei Ding ◽  
Hongyu Wang ◽  
Wenjing Han ◽  
...  

Astragalus membranaceus is a medicinal plant traditionally used in China for a variety of conditions, including inflammatory and neural diseases. Astragalus polysaccharides are shown to reduce the adverse effect of levodopa which is used to treat Parkinson’s disease (PD). However, the neuroprotective effect of Astragalus polysaccharides per se in PD is lacking. Using Caenorhabditis elegans models, we investigated the protective effect of astragalan, an acidic polysaccharide isolated from A. membranaceus, against the neurotoxicity of 6-hydroxydopamine (6-OHDA), a neurotoxin that can induce parkinsonism. We show that 6-OHDA is able to degenerate dopaminergic neurons and lead to the deficiency of food-sensing behavior and a shorter lifespan in C. elegans. Interestingly, these degenerative symptoms can be attenuated by astragalan treatment. Astragalan is also shown to alleviate oxidative stress through reducing reactive oxygen species level and malondialdehyde content and increasing superoxide dismutase and glutathione peroxidase activities and reduce the expression of proapoptotic gene egl-1 in 6-OHDA-intoxicated nematodes. Further studies reveal that astragalan is capable of elevating the decreased acetylcholinesterase activity induced by 6-OHDA. Together, our results demonstrate that the protective effect of astragalan against 6-OHDA neurotoxicity is likely due to the alleviation of oxidative stress and regulation of apoptosis pathway and cholinergic system and thus provide an important insight into the therapeutic potential of Astragalus polysaccharide in neurodegeneration.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 729 ◽  
Author(s):  
Fangzhou Du ◽  
Lin Zhou ◽  
Yan Jiao ◽  
Shuju Bai ◽  
Lu Wang ◽  
...  

Amyloid-β, one of the hallmarks of Alzheimer’s disease (AD), is toxic to neurons and can also cause brain cell death. Oxidative stress is known to play an important role in AD, and there is strong evidence that oxidative stress is associated with amyloid-β. In the present study we report the protective effect of Zijuan Pu’er tea water extract (ZTWE) and the mixture of main ingredients (+)-catechins, caffeine and procyanidin (MCCP) in ZTWE on β-amyloid-induced toxicity in transgenic Caenorhabditis elegans (C. elegans) CL4176 expressing the human Aβ1–42 gene. ZTWE, (+)-catechins, caffeine, procyanidin and MCCP delayed the β-amyloid-induced paralysis to different degrees. The MCCP treatment did not affect the transcript abundance of amyloid-β transgene (amy-1); however, Thioflavin T staining showed a significant decrease in Aβ accumulation compared to untreated worms. Further research using transgenic worms found that MCCP promoted the translocation of DAF-16 from cytoplasm to nucleus and increased the expression of superoxide dismutase 3 (SOD-3). In addition, MCCP decreased the reactive oxygen species (ROS) content and increased the SOD activity in CL4176 worms. In conclusion, the results suggested that MCCP had a significant protective effect on β-amyloid-induced toxicity in C. elegans by reducing β-amyloid aggregation and inducing DAF-16 nuclear translocation that could activate the downstream signal pathway and enhance resistance to oxidative stress.


2016 ◽  
Vol 7 (2) ◽  
pp. 992-1001
Author(s):  
M. C. Asensio-Lopez ◽  
A. Lax ◽  
J. Sanchez-Mas ◽  
A. Avellaneda ◽  
J. Planes ◽  
...  

Processed meat products exert a protective effect against oxidative stress and cell damage induced under ischemia.


2020 ◽  
Vol 8 (1) ◽  
pp. 107-114
Author(s):  
Houra Ramezani ◽  
Khadijeh Abhari ◽  
Zahra Pilevar ◽  
Hosseini Hedayat ◽  
Abdorreza Mohammadi

Introduction. The increasing global consumption of processed meat products has led to certain concerns. For instance, processed meat products are known to contain carcinogen precursor compounds, thus creating the risk of chronic diseases. The present study was performed to estimate the food safety status of processed meat products available in Iran and evaluate the related effective factors. Study objects and methods. 140 samples of seven most popular commercial types of cooked sausages were obtained from four major meat factories (A, B, C and D) in 140 samples were collected from seven most popular commercial types of cooked sausages as follows: beef salami 90%, chicken salami 90%, dry cured sausage 70%, dry cured salami 60%, beef sausages 55%, chicken sausages 55% and Frankfurt sausage 40% (n = 5) from four major meat factories (A, B, C and D) in Tehran. The samples were screened for residual nitrite, ascorbic acid, and nitrosamine contents on days 0, 7, 14, 21, and 28. The results indicated that products from meat factory B had lower residual nitrite content in the samples with high content of meat. Beef salami (90% of meat) and Frankfurt sausage (40% of meat) contained the lowest and highest amounts of residual nitrite on day 0 – 73.99 and 177.42 mg of nitrite per 1 kg of meat, respectively. Results and discussion. Beef salami contained 90% of meat, chicken salami – 90%, dry cured sausage –70%, dry cured salami – 60%, beef sausages – 55%, chicken sausages – 55%, and Frankfurt sausage – 40% (n = 5). Nitrite reduction rates in sausages with a smaller diameter, e.g. Frankfurt sausage, were significantly lower (P < 0.05), compared to salami samples. The difference can be explained by the shorter cooking time. Nitrosamine formation increased during refrigerated storage; however, it was not significant in all samples. During refrigerated storage, nitrosamine formation depended on the level of added nitrite, the amount of residual nitrite, ascorbic acid, pH, and cooking temperature. Ascorbic acid content decreased significantly (P < 0.05) during refrigerated storage. Conclusion. The findings demonstrate significant correlation between the meat content, cooking time, nitrite content, and nitrosamine formation.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


This article presents the results of studying the impact of housing and feeding conditions on broiler chickens of Hubbard RedBro cross, as well as the quality of products obtained when using floor and cage content, in a farm. It established that when receiving a mixed feed of own production using feed raw materials grown on a farm without the use of pesticides, a statistically significant decrease in potentially dangerous substances for animal health is recorded. Compared with factory feed, it has reduced the content of pesticides by 14 times, and mercury and arsenic by 24 times, cadmium by five times, and lead by ten times. The results of the study of economic indicators of growing Hubbard RedBro cross broiler chickens, as well as the chemical composition and quality of carcasses, indicated that there was no significant difference between the floor and cell conditions of keeping. Still, the use of a diet based on eco-feeds contributed to a statistically significant decrease in the concentration of toxic metals in the muscles of the poultry of the experimental groups. As a result, it found that the use of the studied compound feed in the diets of broiler chickens increased the indicators of Biosafety and ensured the production of environmentally safe ("organic") poultry meat products.


2021 ◽  
Vol 13 ◽  
Author(s):  
Abdullah Almotayri ◽  
Jency Thomas ◽  
Mihiri Munasinghe ◽  
Markandeya Jois

Background: The antidepressant mianserin has been shown to extend the lifespan of Caenorhabditis elegans (C. elegans), a well-established model organism used in aging research. The extension of lifespan in C. elegans was shown to be dependent on increased expression of the scaffolding protein (ANK3/unc-44). In contrast, antidepressant use in humans is associated with an increased risk of death. The C. elegans in the laboratory are fed Escherichia coli (E. coli), a diet high in protein and low in carbohydrate, whereas a typical human diet is high in carbohydrates. We hypothesized that dietary carbohydrates might mitigate the lifespan-extension effect of mianserin. Objective: To investigate the effect of glucose added to the diet of C. elegans on the lifespan-extension effect of mianserin. Methods: Wild-type Bristol N2 and ANK3/unc-44 inactivating mutants were cultured on agar plates containing nematode growth medium and fed E. coli. Treatment groups included (C) control, (M50) 50 μM mianserin, (G) 73 mM glucose, and (M50G) 50 μM mianserin and 73 mM glucose. Lifespan was determined by monitoring the worms until they died. Statistical analysis was performed using the Kaplan-Meier version of the log-rank test. Results: Mianserin treatment resulted in a 12% increase in lifespan (P<0.05) of wild-type Bristol N2 worms but reduced lifespan by 6% in ANK3/unc-44 mutants, consistent with previous research. The addition of glucose to the diet reduced the lifespan of both strains of worms and abolished the lifespan-extension by mianserin. Conclusion: The addition of glucose to the diet of C. elegans abolishes the lifespan-extension effects of mianserin.


2008 ◽  
Vol 19 (5) ◽  
pp. 2154-2168 ◽  
Author(s):  
Corey L. Williams ◽  
Marlene E. Winkelbauer ◽  
Jenny C. Schafer ◽  
Edward J. Michaud ◽  
Bradley K. Yoder

Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP), and Joubert syndrome (JBTS) are a group of heterogeneous cystic kidney disorders with partially overlapping loci. Many of the proteins associated with these diseases interact and localize to cilia and/or basal bodies. One of these proteins is MKS1, which is disrupted in some MKS patients and contains a B9 motif of unknown function that is found in two other mammalian proteins, B9D2 and B9D1. Caenorhabditis elegans also has three B9 proteins: XBX-7 (MKS1), TZA-1 (B9D2), and TZA-2 (B9D1). Herein, we report that the C. elegans B9 proteins form a complex that localizes to the base of cilia. Mutations in the B9 genes do not overtly affect cilia formation unless they are in combination with a mutation in nph-1 or nph-4, the homologues of human genes (NPHP1 and NPHP4, respectively) that are mutated in some NPHP patients. Our data indicate that the B9 proteins function redundantly with the nephrocystins to regulate the formation and/or maintenance of cilia and dendrites in the amphid and phasmid ciliated sensory neurons. Together, these data suggest that the human homologues of the novel B9 genes B9D2 and B9D1 will be strong candidate loci for pathologies in human MKS, NPHP, and JBTS.


Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 571-580 ◽  
Author(s):  
William B Raich ◽  
Celine Moorman ◽  
Clay O Lacefield ◽  
Jonah Lehrer ◽  
Dusan Bartsch ◽  
...  

Abstract The pathology of trisomy 21/Down syndrome includes cognitive and memory deficits. Increased expression of the dual-specificity protein kinase DYRK1A kinase (DYRK1A) appears to play a significant role in the neuropathology of Down syndrome. To shed light on the cellular role of DYRK1A and related genes we identified three DYRK/minibrain-like genes in the genome sequence of Caenorhabditis elegans, termed mbk-1, mbk-2, and hpk-1. We found these genes to be widely expressed and to localize to distinct subcellular compartments. We isolated deletion alleles in all three genes and show that loss of mbk-1, the gene most closely related to DYRK1A, causes no obvious defects, while another gene, mbk-2, is essential for viability. The overexpression of DYRK1A in Down syndrome led us to examine the effects of overexpression of its C. elegans ortholog mbk-1. We found that animals containing additional copies of the mbk-1 gene display behavioral defects in chemotaxis toward volatile chemoattractants and that the extent of these defects correlates with mbk-1 gene dosage. Using tissue-specific and inducible promoters, we show that additional copies of mbk-1 can impair olfaction cell-autonomously in mature, fully differentiated neurons and that this impairment is reversible. Our results suggest that increased gene dosage of human DYRK1A in trisomy 21 may disrupt the function of fully differentiated neurons and that this disruption is reversible.


Genetics ◽  
1988 ◽  
Vol 120 (4) ◽  
pp. 977-986
Author(s):  
K J Kemphues ◽  
M Kusch ◽  
N Wolf

Abstract We have analyzed a set of linkage group (LG) II maternal-effect lethal mutations in Caenorhabditis elegans isolated by a new screening procedure. Screens of 12,455 F1 progeny from mutagenized adults resulted in the recovery of 54 maternal-effect lethal mutations identifying 29 genes. Of the 54 mutations, 39 are strict maternal-effect mutations defining 17 genes. These 17 genes fall into two classes distinguished by frequency of mutation to strict maternal-effect lethality. The smaller class, comprised of four genes, mutated to strict maternal-effect lethality at a frequency close to 5 X 10(-4), a rate typical of essential genes in C. elegans. Two of these genes are expressed during oogenesis and required exclusively for embryogenesis (pure maternal genes), one appears to be required specifically for meiosis, and the fourth has a more complex pattern of expression. The other 13 genes were represented by only one or two strict maternal alleles each. Two of these are identical genes previously identified by nonmaternal embryonic lethal mutations. We interpret our results to mean that although many C. elegans genes can mutate to strict maternal-effect lethality, most genes mutate to that phenotype rarely. Pure maternal genes, however, are among a smaller class of genes that mutate to maternal-effect lethality at typical rates. If our interpretation is correct, we are near saturation for pure maternal genes in the region of LG II balanced by mnC1. We conclude that the number of pure maternal genes in C. elegans is small, being probably not much higher than 12.


Sign in / Sign up

Export Citation Format

Share Document