scholarly journals An Experimental Investigation to Use the Biodiesel Resulting from Recycled Sunflower Oil, and Sunflower Oil with Palm Oil as Fuels for Aviation Turbo-Engines

Author(s):  
Grigore Cican ◽  
Marius Deaconu ◽  
Radu Mirea ◽  
Laurentiu Constantin Ceatra ◽  
Mihaiella Cretu

The paper is presenting the experimental analysis of the use of biodiesel from waste sunflower oil and a blend of sunflower oil with palm oil as fuel for aviation turbo-engines. A comparative analysis for fuel mixtures made of Jet A + 5% Aeroshell 500 Oil (Ke) with 10%, 30%, and 50% for each bio-fuel type has been performed and Ke has been used as reference. Firstly, the following physical and chemical properties were determined: density, viscosity, flash point, freezing point, calorific power. Then, elemental analysis and Fourier transform infrared spectroscopy (FTIR) analysis were conducted for Ke, biodiesel obtained from recycled sunflower oil (SF), biodiesel obtained from blending recycled sunflower oil, and recycled palm oil (SFP), and for each fuel blend. Secondly, experimental tests of the blends have been conducted on the Jet Cat P80® micro-turbo engine (Gunt Hamburg, Barsbüttel, Germany). The tests have been conducted at different engine working regimes as follows: idle, cruise, intermediate, and maximum. For each regime, a one-minute testing period was chosen, and the engine parameters have been monitored. The turbo engine instrumentation recorded the temperature after the compressor and before the turbine, the fuel consumption and air flow, pressure inside the combustion chamber, and generated thrust. The burning efficiency and the specific consumption have been calculated for all four above-mentioned regimes and for all fuel blends. Two accelerometers have been installed on the engine’s support to register radial and axial vibrations allowing the assessment of engine stability.

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1196
Author(s):  
Grigore Cican ◽  
Marius Deaconu ◽  
Radu Mirea ◽  
Laurentiu Ceatra ◽  
Mihaiella Cretu ◽  
...  

This paper presents an analysis of the possibility of using recycled pork fat-based biodiesel as fuel for aviation turbo-engines. The analysis consists of the assessment of four blends of Jet A kerosene with 10%, 30%, 50%, and 100% biodiesel and pure Jet A that was used as reference in the study. The first part of the paper presents the physical-chemical properties of the blends: density, viscosity, flash point, freezing point, and calorific power. Through Fourier transform infrared spectroscopy (FTIR) analysis, a benchmark was performed on the mixtures of Jet A with 10%, 20%, 30%, 50%, and 100% biodiesel compared with Jet A. The second part of the paper presents the test results of these blends used for fuelling a Jet Cat P80 turbo engine at the Turbo Engines Laboratory of the Aerospace Engineering Faculty of Polyethnic University of Bucharest. These functional tests were performed using different operating regimes as follows: idle, cruise, intermediate, and maximum. For each regime, a testing period of around 1 min was selected and the engine parameters were monitored during the test execution. The burning efficiency was calculated for the maximum regime for all mixtures. To evaluate the functioning stability of the turbo engine using biodiesel, two accelerometers were mounted on the engine support that recorded the radial and axial vibrations. Moreover, to assess the burning stability and to identify other acoustic spectral components when biodiesel is used, two microphones were placed near the jet region. A comparative analysis between blends was made by taking the Jet A fuel as reference.


2016 ◽  
Vol 10 (4) ◽  
pp. 485-492 ◽  
Author(s):  
Anna Iakovlieva ◽  
◽  
Oksana Vovk ◽  
Sergii Boichenko ◽  
Kazimierz Lejda ◽  
...  

The work is devoted to the development of alternative jet fuel blended with rapeseed oil-derived biocomponents and study of their physical-chemical properties. The modification of conventional jet fuel by rapeseed oil esters was chosen for this work among the variety of technologies for alternative jet fuels development. The main characteristics of conventional jet fuel and three kinds of biocomponents were determined and compared to the standards requirements to jet fuel of Jet A-1 grade. The most important or identifying physical-chemical properties of jet fuels were determined for the scope of this study. Among them are: density, viscosity, fractional composition, freezing point and net heat of combustion. The influence of rapeseed oil-derived biocomponents on the mentioned above characteristics of blended jet fuels was studied and explained.


2019 ◽  
Vol 31 (7) ◽  
pp. 1257-1280 ◽  
Author(s):  
Abbas Hojati ◽  
Alireza Shirneshan

In this research, a thermodynamic zero-dimensional model has been done to predict performance characteristics (in-cylinder pressure, heat released, and the thermal efficiency) of a diesel engine with the use of biodiesel–diesel fuel blends (B0, B20, B50, B80, and B100) at different compression ratios (14, 15, 16, 17, and 18). The corresponding mathematical and thermodynamic relationships have been solved in MATLAB. Based on the experimental tests, it was found that the developed model can predict the engine variables sufficiently. According to the results, the heat release rate and the cylinder pressure increased for all fuel blends by an increase in the compression ratio. Moreover, with the increasing biodiesel amount in the fuel blend (up to 50%) heat release rate and the cylinder pressure increased but these variables have a reduction when biodiesel percentage increases from 50 to 100 due to the lower heating value of waste cooking oil methyl ester in comparison with neat diesel fuel. Moreover, according to the experimental tests, carbon monoxide emission was reduced when biodiesel proportion increased in the fuel blend but the nitrogen oxides emitted from the engine enhanced when biodiesel amount in the fuel mixture increased. According to the results, it can be concluded that B50 has better combustion characteristics among all fuel blends.


Author(s):  
Scott B. Fiveland ◽  
Brett M. Bailey ◽  
Martin L. Willi ◽  
Joel D. Hiltner ◽  
Farzan Parsinejad ◽  
...  

Premixed, lean burn combustion research has focused for years on extending the lean flammability limit while maintaining both stables ignition and turbulent flame propagation. Operating with a leaner air-fuel mixture results in a lower temperature conversion of reactants to products (i.e. reduced NOx) while maintaining thermal efficiency. The lean limit, at some level, is dependent on both the fuel transport and chemical properties. This work sets out to numerically explore the effect of reformed fuels on both fundamental flame stability and the performance/emissions tradeoffs of the engine. The numerical simulations were conducted for a range of reformed fuel blends (10–40%) as well as mixture equivalence ratios (0.35–0.6). The laminar flame speed results clearly define the regime of stable flame propagations for equivalence ratio/reformed fuel blend combinations. Subsequently, a validated and predictive quasi-dimensional engine simulation is used to simulate the performance/emissions characteristics of the complete engine system operating on the reformed fuel blends (10–50%) for a range of ignition timings, and air-fuel ratios. The performance trends define not only the misfire and detonation limits associated with the air-fuel blends but also the thermal efficiency/NOx tradeoffs.


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Cristina Dusescu ◽  
Anca Borcea ◽  
Vasile Matei ◽  
Ion Popa ◽  
Irina Gabriela Radulescu

The present paper studies biodiesel samples preparation by transesterification and compares their physical and chemical properties (biofuels prepared from different raw materials - vegetable oils: sunflower oil, crocus oil and soya bean oil) and the biodegradability degree, as well as the possibilities of the integration of such production unit in industrial diagram of auto fuels production.


2020 ◽  
Vol 14 (1(51)) ◽  
pp. 79-92
Author(s):  
I. V. Podorozhniaya ◽  
S. S. Vetokhin

The values of freezing point, titratable and active acidities, conductivity, water activity, humidity, nonfat milk solids the of samples of market bioyoghurt were analyzed. They significantly differ from the same row milk indicators. So, they demonstrated lower values of freezing point, active acidity, water activity, humidity, and increased values of titratable acidity and conductivity, and nonfat milk solids. A large dispersion of the studied products’ properties was found for each manufacturer production as well as between producers. Yoghurts with Bifidobacterium that were produced at the Brest region had the highest values of рН, nonfat milk solids and lowest values of freezing point and humidity. This fact evidences the manufacturer has a well-established technological process for the production of bioyogurt and traceability of raw milk supply. The boundaries of the confidence intervals of physical and chemical properties both by individual manufacturers and jointly were determined. A close relationship between conductivity and freezing point in bioyoghurts of some manufacturers has been found. The dynamics of their changes in last years is traced.


2018 ◽  
Author(s):  
Adriaan Smuts Van Niekerk ◽  
Benjamin Drew ◽  
Neil Larsen ◽  
Peter Kay

To reduce the amount of carbon dioxide released from transportation the EU has implemented legislation to mandate the renewable content of petrol and diesel fuels. However, due to the complexity of the combustion process the addition of renewable content, such as biodiesel and ethanol, can have a detrimental effect on other engine emissions. In particular the engine load can have a significant impact on the emissions. Most research that have studied this issue are based on steady state tests, that are unrealistic of real world driving and will not capture the difference between full and part loads. This study aims to address this by investigating the effect of renewable fuel blends of diesel, biodiesel and ethanol on the emissions of a compression ignition engine tested over the World Harmonised Light Vehicle Test Procedure (WLTP). Diesel, biodiesel and ethanol were blended to form binary and ternary blends, the ratios were determined by Design of Experiments (DoE). The total amount of emissions for CO, CO2 and NOx as well as the fuel consumption, were measured from a 2.4 liter compression ignition (CI) engine running over the WLTP drive cycle. The results depicted that percentages smaller than 10 % of ethanol in the fuel blend can reduce CO emissions, CO2 emissions as well as NOx emissions, but increases fuel consumption with increasing percentage of ethanol in the fuel blend. Blends with biodiesel resulted in minor increases in CO emissions due to the engine being operated in the low and medium load regions over the WLTP. CO2 emissions as well as NOx emissions increased as a result of the high oxygen content in biodiesel which promoted better combustion. Fuel consumption increased for blends with biodiesel as a result from biodiesel's lower heating value. All the statistical models describing the engine responses were significant and this demonstrated that a mixture DoE is suitable to quantify the effect of fuel blends on an engine's emissions response. An optimised ternary blend of B2E9 was found to be suitable as a 'drop in' fuel that will reduce harmful emissions of CO emissions by approximately 34 %, NOx emissions by 10 % and CO2 emissions by 21 % for transient engine operating scenarios such as the WLTP drive cycle.


2018 ◽  
Vol 1 (1) ◽  
pp. 20-26
Author(s):  
Mursalin Mursalin

Efforts to develop the production technology of high quality red palm-oil (RPO) in order to provide source of food ingredient that naturally rich of nutrients, become urgents regarding the need of such products drastically increased recently. Application of deodorization technology by temperature, time, and deodorizer pressure combinations (engineering of deodorization process) are studied and evaluated to obtain good quality of RPO. Crude palm oil (CPO) used in this research were supplied by PT. Salim Ivomas (Bimoli) Jakarta. The equipments used were degumming and neutralization unit, deodorization unit and other equipment units to analize the oil physico-chemical properties. The research consisted of 5 stages as the following: characterising CPO physico-chemical properties, conducting chemically degumming and deacidification, process enginering of deodorization, characterizing of physico-chemical properties and organoleptic of RPO resulted, and analyzing data for product resulted from process engineering applied. Deodorization with the range of temperature and process duration of 135–145 oC (408–418 K) and 1–4 hours have led to carotene retention decreasing (%) following the equation “Carotene Retention (%) = -764 x ln(absolute temperature) + 4693” and process duration with the equation “Carotene Retention (%) = -7.81 x ln(process duration) + 91.02”; and also resulted odor intensity with the equation “Odor Intensity = 0.08 x (squared absolute temperature) – 66.88 x (absolute temperature) + 13823” and duration process with the equation “Odor Intensity = 0.315 x (squared process duration) – 1.52 x (process duration) + 5.268”. Effective deodorization to produce RPO with the content of free fatty acid and peroxide value that met the requirements of Indonesian National Standard (SNI) quality of carotene content above 400 ppm and odor scale below 3.3, were the combination of temperature (T) of 141.34 oC, heat process duration (t) of 2.35 hours and vacuum pressure of (P) of 20 mmHg. The resulted RPO contained free fatty acid and peroxide value of 0.11% dan 0.12 meq/kg oil respectively, total carotene of 444.09 ppm and odor value of 3.21  


2013 ◽  
Vol 467 ◽  
pp. 122-126 ◽  
Author(s):  
T. Saravana Kannan ◽  
C. Piraiarasi ◽  
Abu Saleh Ahmed ◽  
Ani Farid Nasir

The present study aims to investigate the corrosion characteristics of copper commonly encountered in the spark ignition (SI) engine fuel system with Malaysian bioethanol and gasoline blends. Static immersion tests in E0 (gasoline), E10 and E85 were carried out at room temperature for 1320 h. Mechanical, physical and chemical properties of copper was investigated before and after immersion tests. Investigations were carried out on change in morphological properties using optical microscope; change in chemical structure using FTIR; change in mass and volume by weight loss measurement; hardness changes using universal hardness tester; and change of chemical properties of the fuel blends using total acid number titration method. The test results showed that corrosion of copper was increased with the high concentration of ethanol in the blends.


Sign in / Sign up

Export Citation Format

Share Document