scholarly journals Molecular Evolution of MERS Coronavirus: Dromedaries as a Recent Intermediate Host or Long-Time Animal Reservoir?

2017 ◽  
Vol 18 (10) ◽  
pp. 2138 ◽  
Author(s):  
Susanna Lau ◽  
Antonio Wong ◽  
Terrence Lau ◽  
Patrick Woo
Parasitology ◽  
2009 ◽  
Vol 136 (9) ◽  
pp. 981-986 ◽  
Author(s):  
M. Z. ALAM ◽  
D. A. KOVALENKO ◽  
K. KUHLS ◽  
R. M. NASYROVA ◽  
V. I. PONOMAREVA ◽  
...  

SUMMARYOur present study is the first attempt to characterize Leishmania parasites from foci in Uzbekistan and Tajikistan endemic for visceral leishmaniasis (VL). PCR-sequencing of the ribosomal internal transcribed spacer 1 and multilocus microsatellite typing (MLMT) were applied to DNA extracted from preparations of Giemsa-stained bone marrow aspirates from 13 cases of VL. L. infantum was shown to cause VL currently occurring in this area. MLMT applying 14 microsatellite markers, previously shown to be polymorphic for strains of the L. donovani complex, revealed that microsatellite profiles of parasites causing human VL in the Namangan and Jizzakh regions in Uzbekistan, and Penjikent region in Tajikistan, basically coincide with those of strains of L. infantum MON-1. Furthermore, these parasites were assigned to a distinct cluster genetically clearly separated from the populations of L. infantum MON-1 from Europe, the Middle East and North Africa. The existence of a genetically homogeneous but distinct group of L. infantum MON-1 indicates that the parasites circulating in the Uzbeki and Tajiki foci studied have been restricted there for a long time rather than having been recently introduced from elsewhere by human or animal reservoir migration.


Parasitology ◽  
1957 ◽  
Vol 47 (1-2) ◽  
pp. 209-216 ◽  
Author(s):  
J. A. Dinnik ◽  
N. N. Dinnik

The development of Paramphistomum sukari Dinnik in a snail host is described with the emphasis laid on the succession of redial generation.The sporocyst gives birth to about twenty to thirty rediae. These rediae of the first generation commence with the production of daughter rediae then enter the second phase of their productivity during which they produce cercariae. The daughter rediae, or the rediae of the second generation, repeat these two phases during their lives, commencing with redial production and after that changing to the production to cercariae. Both the first- and second-generation rediae are able to produce a few daughter rediae at the end of their life. There is evidence that the subsequent generations of rediae are also able to give birth to daughter rediae and cercariae.As a result the successive generations of rediae maintain the infection in an intermediate host for a long time, probably as long as the infected snail can survive.


Author(s):  
M. Iwatsuki ◽  
Y. Kokubo ◽  
Y. Harada ◽  
J. Lehman

In recent years, the electron microscope has been significantly improved in resolution and we can obtain routinely atomic-level high resolution images without any special skill. With this improvement, the structure analysis of organic materials has become one of the interesting targets in the biological and polymer crystal fields.Up to now, X-ray structure analysis has been mainly used for such materials. With this method, however, great effort and a long time are required for specimen preparation because of the need for larger crystals. This method can analyze average crystal structure but is insufficient for interpreting it on the atomic or molecular level. The electron microscopic method for organic materials has not only the advantage of specimen preparation but also the capability of providing various information from extremely small specimen regions, using strong interactions between electrons and the substance. On the other hand, however, this strong interaction has a big disadvantage in high radiation damage.


Author(s):  
YIQUN MA

For a long time, the development of dynamical theory for HEER has been stagnated for several reasons. Although the Bloch wave method is powerful for the understanding of physical insights of electron diffraction, particularly electron transmission diffraction, it is not readily available for the simulation of various surface imperfection in electron reflection diffraction since it is basically a method for bulk materials and perfect surface. When the multislice method due to Cowley & Moodie is used for electron reflection, the “edge effects” stand firmly in the way of reaching a stationary solution for HEER. The multislice method due to Maksym & Beeby is valid only for an 2-D periodic surface.Now, a method for solving stationary solution of HEER for an arbitrary surface is available, which is called the Edge Patching method in Multislice-Only mode (the EPMO method). The analytical basis for this method can be attributed to two important characters of HEER: 1) 2-D dependence of the wave fields and 2) the Picard iteractionlike character of multislice calculation due to Cowley and Moodie in the Bragg case.


Author(s):  
Yimei Zhu ◽  
J. Tafto

The electron holes confined to the CuO2-plane are the charge carriers in high-temperature superconductors, and thus, the distribution of charge plays a key role in determining their superconducting properties. While it has been known for a long time that in principle, electron diffraction at low angles is very sensitive to charge transfer, we, for the first time, show that under a proper TEM imaging condition, it is possible to directly image charge in crystals with a large unit cell. We apply this new way of studying charge distribution to the technologically important Bi2Sr2Ca1Cu2O8+δ superconductors.Charged particles interact with the electrostatic potential, and thus, for small scattering angles, the incident particle sees a nuclei that is screened by the electron cloud. Hence, the scattering amplitude mainly is determined by the net charge of the ion. Comparing with the high Z neutral Bi atom, we note that the scattering amplitude of the hole or an electron is larger at small scattering angles. This is in stark contrast to the displacements which contribute negligibly to the electron diffraction pattern at small angles because of the short g-vectors.


Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
M. A. Burke

Intermetallic matrix composites are candidates for ultrahigh temperature service when light weight and high temperature strength and stiffness are required. Recent efforts to produce intermetallic matrix composites have focused on the titanium aluminide (TiAl) system with various ceramic reinforcements. In order to optimize the composition and processing of these composites it is necessary to evaluate the range of structures that can be produced in these materials and to identify the characteristics of the optimum structures. Normally, TiAl materials are difficult to process and, thus, examination of a suitable range of structures would not be feasible. However, plasma processing offers a novel method for producing composites from difficult to process component materials. By melting one or more of the component materials in a plasma and controlling deposition onto a cooled substrate, a range of structures can be produced and the method is highly suited to examining experimental composite systems. Moreover, because plasma processing involves rapid melting and very rapid cooling can be induced in the deposited composite, it is expected that processing method can avoid some of the problems, such as interfacial degradation, that are associated with the relatively long time, high temperature exposures that are induced by conventional processing methods.


Author(s):  
Shailesh R. Sheth ◽  
Jayesh R. Bellare

Specimen support and astigmatism correction in Electron Microscopy are at least two areas in which lacey polymer films find extensive applications. Although their preparation has been studied for a very long time, present techniques still suffer from incomplete release of the film from its substrate and presence of a large number of pseudo holes in the film. Our method ensures complete removal of the entire lacey film from the substrate and fewer pseudo holes by pre-treating the substrate with Gum Arabic, which acts as a film release agent.The method is based on the classical condensation technique for preparing lacey films which is essentially deposition of minute water or ice droplets on the substrate and laying the polymer film over it, so that micro holes are formed corresponding to the droplets. A microscope glass slide (the substrate) is immersed in 2.0% (w/v) aq. CTAB (cetyl trimethyl ammonium bromide)-0.22% (w/v) aq.


Author(s):  
K.-H. Herrmann ◽  
W. D. Rau ◽  
R. Sikeler

Quantitative recording of electron patterns and their rapid conversion into digital information is an outstanding goal which the photoplate fails to solve satisfactorily. For a long time, LLL-TV cameras have been used for EM adjustment but due to their inferior pixel number they were never a real alternative to the photoplate. This situation has changed with the availability of scientific grade slow-scan charged coupled devices (CCD) with pixel numbers exceeding 106, photometric accuracy and, by Peltier cooling, both excellent storage and noise figures previously inaccessible in image detection technology. Again the electron image is converted into a photon image fed to the CCD by some light optical transfer link. Subsequently, some technical solutions are discussed using the detection quantum efficiency (DQE), resolution, pixel number and exposure range as figures of merit.A key quantity is the number of electron-hole pairs released in the CCD sensor by a single primary electron (PE) which can be estimated from the energy deposit ΔE in the scintillator,


Author(s):  
Rudolf Oldenbourg

The polarized light microscope has the unique potential to measure submicroscopic molecular arrangements dynamically and non-destructively in living cells and other specimens. With the traditional pol-scope, however, single images display only those anisotropic structures that have a limited range of orientations with respect to the polarization axes of the microscope. Furthermore, rapid measurements are restricted to a single image point or single area that exhibits uniform birefringence or other form of optical anisotropy, while measurements comparing several image points take an inordinately long time.We are developing a new kind of polarized light microscope which combines speed and high resolution in its measurement of the specimen anisotropy, irrespective of its orientation. The design of the new pol-scope is based on the traditional polarized light microscope with two essential modifications: circular polarizers replace linear polarizers and two electro-optical modulators replace the traditional compensator. A video camera and computer assisted image analysis provide measurements of specimen anisotropy in rapid succession for all points of the image comprising the field of view.


2001 ◽  
Vol 7 (S2) ◽  
pp. 148-149
Author(s):  
C.D. Poweleit ◽  
J Menéndez

Oil immersion lenses have been used in optical microscopy for a long time. The light’s wavelength is decreased by the oil’s index of refraction n and this reduces the minimum spot size. Additionally, the oil medium allows a larger collection angle, thereby increasing the numerical aperture. The SIL is based on the same principle, but offers more flexibility because the higher index material is solid. in particular, SILs can be deployed in cryogenic environments. Using a hemispherical glass the spatial resolution is improved by a factor n with respect to the resolution obtained with the microscope’s objective lens alone. The improvement factor is equal to n2 for truncated spheres.As shown in Fig. 1, the hemisphere SIL is in contact with the sample and does not affect the position of the focal plane. The focused rays from the objective strike the lens at normal incidence, so that no refraction takes place.


Sign in / Sign up

Export Citation Format

Share Document