scholarly journals Systematic Analysis of Differentially Expressed Maize ZmbZIP Genes between Drought and Rewatering Transcriptome Reveals bZIP Family Members Involved in Abiotic Stress Responses

2019 ◽  
Vol 20 (17) ◽  
pp. 4103 ◽  
Author(s):  
Liru Cao ◽  
Xiaomin Lu ◽  
Pengyu Zhang ◽  
Guorui Wang ◽  
Li Wei ◽  
...  

The basic leucine zipper (bZIP) family of transcription factors (TFs) regulate diverse phenomena during plant growth and development and are involved in stress responses and hormone signaling. However, only a few bZIPs have been functionally characterized. In this paper, 54 maize bZIP genes were screened from previously published drought and rewatering transcriptomes. These genes were divided into nine groups in a phylogenetic analysis, supported by motif and intron/exon analyses. The 54 genes were unevenly distributed on 10 chromosomes and contained 18 segmental duplications, suggesting that segmental duplication events have contributed to the expansion of the maize bZIP family. Spatio-temporal expression analyses showed that bZIP genes are widely expressed during maize development. We identified 10 core ZmbZIPs involved in protein transport, transcriptional regulation, and cellular metabolism by principal component analysis, gene co-expression network analysis, and Gene Ontology enrichment analysis. In addition, 15 potential stress-responsive ZmbZIPs were identified by expression analyses. Localization analyses showed that ZmbZIP17, -33, -42, and -45 are nuclear proteins. These results provide the basis for future functional genomic studies on bZIP TFs in maize and identify candidate genes with potential applications in breeding/genetic engineering for increased stress resistance. These data represent a high-quality molecular resource for selecting resistant breeding materials.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 148
Author(s):  
Zhiyuan Li ◽  
Jiangtao Chao ◽  
Xiaoxu Li ◽  
Gongbo Li ◽  
Dean Song ◽  
...  

The basic leucine zipper (bZIP) transcription factors play important regulatory roles, influencing plant growth and responses to environmental stresses. In the present study, 132 bZIP genes identified in the tobacco genome were classified into 11 groups with Arabidopsis and tomato bZIP members, based on the results of a phylogenetic analysis. An examination of gene structures and conserved motifs revealed relatively conserved exon/intron structures and motif organization within each group. The results of an investigation of whole-genome duplication events indicated that segmental duplications were crucial for the expansion of the bZIP gene family in tobacco. Expression profiles confirmed that the NtbZIP genes are differentially expressed in various tissues, and several genes are responsive to diverse stresses. Notably, NtbZIP62, which was identified as an AtbZIP37/ABF3 homolog, was highly expressed in response to salinity. Subcellular localization analyses proved that NtbZIP62 is a nuclear protein. Furthermore, the overexpression of NtbZIP62 in tobacco significantly enhanced the salt stress tolerance of the transgenic plants. The results of this study may be relevant for future functional analyses of the bZIP genes in tobacco.



2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yanhui Liu ◽  
Mengnan Chai ◽  
Man Zhang ◽  
Qing He ◽  
Zhenxia Su ◽  
...  

This study identified 57 basic leucine zipper (bZIP) genes from the pineapple genome, and the analysis of these bZIP genes was focused on the evolution and divergence after multiple duplication events in relation to the pineapple genome fusion. According to bioinformatics analysis of a phylogenetic tree, the bZIP gene family was divided into 11 subgroups in pineapple, Arabidopsis, and rice; gene structure and conserved motif analyses showed that bZIP genes within the same subgroup shared similar intron-exon organizations and motif composition. Further synteny analysis showed 17 segmental duplication events with 27 bZIP genes. The study also analyzed the pineapple gene expression of bZIP genes in different tissues, organs, and developmental stages, as well as in abiotic stress responses. The RNA-sequencing data showed that AcobZIP57 was upregulated in all tissues, including vegetative and reproductive tissues. AcobZIP28 and AcobZIP43 together with the other 25 bZIP genes did not show high expression levels in any tissue. Six bZIP genes were exposed to abiotic stress, and the relative expression levels were detected by quantitative real-time PCR. A significant response was observed for AcobZIP24 against all kinds of abiotic stresses at 24 and 48 h in pineapple root tissues. Our study provides a perspective for the evolutionary history and general biological involvement of the bZIP gene family of pineapple, which laid the foundation for future functional characterization of the bZIP genes in pineapple.



2020 ◽  
Vol 8 (7) ◽  
pp. 1045
Author(s):  
Yuping Xu ◽  
Yongchun Wang ◽  
Huizhang Zhao ◽  
Mingde Wu ◽  
Jing Zhang ◽  
...  

The basic leucine zipper (bZIP) proteins family is one of the largest and most diverse transcription factors, widely distributed in eukaryotes. However, no information is available regarding the bZIP gene family in Coniothyrium minitans, an important biocontrol agent of the plant pathogen Sclerotinia sclerotiorum. In this study, we identified 34 bZIP genes from the C. minitans genome, which were classified into 8 groups based on their phylogenetic relationships. Intron analysis showed that 28 CmbZIP genes harbored a variable number of introns, and 15 of them shared a feature that intron inserted into the bZIP domain. The intron position in bZIP domain was highly conserved, which was related to recognize the arginine (R) and could be treated as a genomic imprinting. Expression analysis of the CmbZIP genes in response to abiotic stresses indicated that they might play distinct roles in abiotic stress responses. Results showed that 22 CmbZIP genes were upregulated during the later stage of conidial development. Furthermore, transcriptome analysis indicated that CmbZIP genes are involved in different stages of mycoparasitism. Among deletion mutants of four CmbZIPs (CmbZIP07, -09, -13, and -16), only ΔCmbZIP16 mutants significantly reduced its tolerance to the oxidative stress. The other mutants exhibited no significant effects on colony morphology, mycelial growth, conidiation, and mycoparasitism. Taken together, our results suggested that CmbZIP genes play important roles in the abiotic stress responses, conidial development, and mycoparasitism. These results provide comprehensive information of the CmbZIP gene family and lay the foundation for further research on the bZIP gene family regarding their biological functions and evolutionary history.



PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7878 ◽  
Author(s):  
Youxin Yang ◽  
Jingwen Li ◽  
Hao Li ◽  
Yingui Yang ◽  
Yelan Guang ◽  
...  

The basic leucine zipper (bZIP) family transcription factors play crucial roles in regulating plant development and stress response. In this study, we identified 62 ClabZIP genes from watermelon genome, which were unevenly distributed across the 11 chromosomes. These ClabZIP proteins could be classified into 13 groups based on the phylogenetic relationships, and members in the same group showed similar compositions of conserved motifs and gene structures. Transcriptome analysis revealed that a number of ClabZIP genes have important roles in the melatonin (MT) induction of cold tolerance. In addition, some ClabZIP genes were induced or repressed under red light (RL) or root-knot nematode infection according to the transcriptome data, and the expression patterns of several ClabZIP genes were further verified by quantitative real-time PCR, revealing their possible roles in RL induction of watermelon defense against nematode infection. Our results provide new insights into the functions of different ClabZIP genes in watermelon and their roles in response to cold stress and nematode infection.



2010 ◽  
Vol 23 (8) ◽  
pp. 1053-1068 ◽  
Author(s):  
Min Guo ◽  
Wang Guo ◽  
Yue Chen ◽  
Suomeng Dong ◽  
Xing Zhang ◽  
...  

Magnaporthe oryzae is the causal agent of rice blast disease, leading to enormous losses of rice production. Here, we characterized a basic leucine zipper (bZIP) transcription factor, Moatf1, in M. oryzae, a homolog of Schizosaccharomyces pombe ATF/CREB that regulates the oxidative stress response. Moatf1 deletion caused retarded vegetative growth of mycelia, and the Moatf1 mutant exhibited higher sensitivity to hydrogen peroxide (H2O2) than did the wild-type strain. The mutant showed severely reduced activity of extracellular enzymes and transcription level of laccases and peroxidases and exhibited significantly reduced virulence on rice cultivar CO-39. On rice leaf sheath, most of the infectious hyphae of the mutant became swollen and displayed restricted growth in primary infected cells. Defense response was strongly activated in plants infected by the mutant. Diamino benzidine staining revealed an accumulation of H2O2 around Moatf1 mutant appressoria and rice cells with Moatf1 hyphae that was absent in the wild type. Inhibition of the plant NADPH oxidase by diphenyleneiodonium prevented host-derived H2O2 accumulation and restored infectious hyphal growth of the mutant in rice cells. Thus, we conclude that Moatf1 is necessary for full virulence of M. oryzae by regulating the transcription of laccases and peroxidases to impair reactive oxygen species–mediated plant defense.



2013 ◽  
Vol 12 (10) ◽  
pp. 1403-1412 ◽  
Author(s):  
Heber Gamboa-Meléndez ◽  
Apolonio I. Huerta ◽  
Howard S. Judelson

ABSTRACT Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs.



2020 ◽  
Vol 21 (3) ◽  
pp. 1068
Author(s):  
Tingting Zhu ◽  
Linxuan Li ◽  
Li Feng ◽  
Maozhi Ren

Abscisic acid (ABA) insensitive 5 (ABI5)—a core transcription factor of the ABA signaling pathway—is a basic leucine zipper transcription factor that plays a key role in the regulation of seed germination and early seedling growth. ABI5 interacts with other phytohormone signals to regulate plant growth and development, and stress responses in Arabidopsis, but little is known about the functions of ABI5 in potatoes. Here, we find that StABI5 is involved in the regulation of chloroplast development and photosynthesis. Genetic analysis indicates that StABI5 overexpression transgenic potato lines accelerate dark-induced leaf yellowing and senescence. The chlorophyll contents of overexpressed StABI5 transgenic potato lines were significantly decreased in comparison to those of wild-type Desiree potatoes under dark conditions. Additionally, the RNA-sequencing (RNA-seq) analysis shows that many metabolic processes are changed in overexpressed StABI5 transgenic potatoes. Most of the genes involved in photosynthesis and carbon fixation are significantly down-regulated, especially the chlorophyll a-b binding protein, photosystem I, and photosystem II. These observations indicate that StABI5 negatively regulates chloroplast development and photosynthesis, and provides some insights into the functions of StABI5 in regard to potato growth.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Fan ◽  
Xiaobao Wei ◽  
Dili Lai ◽  
Hao Yang ◽  
Liang Feng ◽  
...  

Abstract Background GRAS transcription factors perform indispensable functions in various biological processes, such as plant growth, fruit development, and biotic and abiotic stress responses. The development of whole-genome sequencing has allowed the GRAS gene family to be identified and characterized in many species. However, thorough in-depth identification or systematic analysis of GRAS family genes in foxtail millet has not been conducted. Results In this study, 57 GRAS genes of foxtail millet (SiGRASs) were identified and renamed according to the chromosomal distribution of the SiGRAS genes. Based on the number of conserved domains and gene structure, the SiGRAS genes were divided into 13 subfamilies via phylogenetic tree analysis. The GRAS genes were unevenly distributed on nine chromosomes, and members of the same subfamily had similar gene structures and motif compositions. Genetic structure analysis showed that most SiGRAS genes lacked introns. Some SiGRAS genes were derived from gene duplication events, and segmental duplications may have contributed more to GRAS gene family expansion than tandem duplications. Quantitative polymerase chain reaction showed significant differences in the expression of SiGRAS genes in different tissues and stages of fruits development, which indicated the complexity of the physiological functions of SiGRAS. In addition, exogenous paclobutrazol treatment significantly altered the transcription levels of DELLA subfamily members, downregulated the gibberellin content, and decreased the plant height of foxtail millet, while it increased the fruit weight. In addition, SiGRAS13 and SiGRAS25 may have the potential for genetic improvement and functional gene research in foxtail millet. Conclusions Collectively, this study will be helpful for further analysing the biological function of SiGRAS. Our results may contribute to improving the genetic breeding of foxtail millet.



2021 ◽  
Vol 12 ◽  
Author(s):  
Yunfei Wen ◽  
Ali Raza ◽  
Wen Chu ◽  
Xiling Zou ◽  
Hongtao Cheng ◽  
...  

TCP proteins are plant-specific transcription factors that have multipurpose roles in plant developmental procedures and stress responses. Therefore, a genome-wide analysis was performed to categorize the TCP genes in the rapeseed genome. In this study, a total of 80 BnTCP genes were identified in the rapeseed genome and grouped into two main classes (PCF and CYC/TB1) according to phylogenetic analysis. The universal evolutionary analysis uncovered that BnTCP genes had experienced segmental duplications and positive selection pressure. Gene structure and conserved motif examination presented that Class I and Class II have diverse intron-exon patterns and motifs numbers. Overall, nine conserved motifs were identified and varied from 2 to 7 in all TCP genes; and some of them were gene-specific. Mainly, Class II (PCF and CYC/TB1) possessed diverse structures compared to Class I. We identified four hormone- and four stress-related responsive cis-elements in the promoter regions. Moreover, 32 bna-miRNAs from 14 families were found to be targeting 21 BnTCPs genes. Gene ontology enrichment analysis presented that the BnTCP genes were primarily related to RNA/DNA binding, metabolic processes, transcriptional regulatory activities, etc. Transcriptome-based tissue-specific expression analysis showed that only a few genes (mainly BnTCP9, BnTCP22, BnTCP25, BnTCP48, BnTCP52, BnTCP60, BnTCP66, and BnTCP74) presented higher expression in root, stem, leaf, flower, seeds, and silique among all tested tissues. Likewise, qRT-PCR-based expression analysis exhibited that BnTCP36, BnTCP39, BnTCP53, BnTCP59, and BnTCP60 showed higher expression at certain time points under various hormones and abiotic stress conditions but not by drought and MeJA. Our results opened the new groundwork for future understanding of the intricate mechanisms of BnTCP in various developmental processes and abiotic stress signaling pathways in rapeseed.



Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1996
Author(s):  
Anna Collin ◽  
Agata Daszkowska-Golec ◽  
Iwona Szarejko

The core abscisic acid (ABA) signaling pathway consists of receptors, phosphatases, kinases and transcription factors, among them ABA INSENSITIVE 5 (ABI5) and ABRE BINDING FACTORs/ABRE-BINDING PROTEINs (ABFs/AREBs), which belong to the BASIC LEUCINE ZIPPER (bZIP) family and control expression of stress-responsive genes. ABI5 is mostly active in seeds and prevents germination and post-germinative growth under unfavorable conditions. The activity of ABI5 is controlled at transcriptional and protein levels, depending on numerous regulators, including components of other phytohormonal pathways. ABFs/AREBs act redundantly in regulating genes that control physiological processes in response to stress during vegetative growth. In this review, we focus on recent reports regarding ABI5 and ABFs/AREBs functions during abiotic stress responses, which seem to be partially overlapping and not restricted to one developmental stage in Arabidopsis and other species. Moreover, we point out that ABI5 and ABFs/AREBs play a crucial role in the core ABA pathway’s feedback regulation. In this review, we also discuss increased stress tolerance of transgenic plants overexpressing genes encoding ABA-dependent bZIPs. Taken together, we show that ABI5 and ABFs/AREBs are crucial ABA-dependent transcription factors regulating processes essential for plant adaptation to stress at different developmental stages.



Sign in / Sign up

Export Citation Format

Share Document