scholarly journals Overexpression of WAX INDUCER1/SHINE1 Gene Enhances Wax Accumulation under Osmotic Stress and Oil Synthesis in Brassica napus

2019 ◽  
Vol 20 (18) ◽  
pp. 4435 ◽  
Author(s):  
Ning Liu ◽  
Jie Chen ◽  
Tiehu Wang ◽  
Qing Li ◽  
Pengpeng Cui ◽  
...  

WAX INDUCER1/SHINE1 (WIN1) belongs to the AP2/EREBP transcription factor family and plays an important role in wax and cutin accumulation in plants. Here we show that BnWIN1 from Brassica napus (Bn) has dual functions in wax accumulation and oil synthesis. Overexpression (OE) of BnWIN1 led to enhanced wax accumulation and promoted growth without adverse effects on oil synthesis under salt stress conditions. Lipid profiling revealed that BnWIN1-OE plants accumulated more waxes with elevated C29-alkanes, C31-alkanes, C28-alcohol, and C29-alcohol relative to wild type (WT) under salt stress. Moreover, overexpression of BnWIN1 also increased seed oil content under normal growth conditions. BnWIN1 directly bound to the promoter region of genes encoding biotin carboxyl carrier protein 1 (BCCP1), glycerol-3-phosphate acyltransferase 9 (GPAT9), lysophosphatidic acid acyltransferase 5 (LPAT5), and diacylglycerol acyltransferase 2 (DGAT2) involved in the lipid anabolic process. Overexpression of BnWIN1 resulted in upregulated expression of numerous genes involved in de novo fatty acid synthesis, wax accumulation, and oil production. The results suggest that BnWIN1 is a transcriptional activator to regulate the biosynthesis of both extracellular and intracellular lipids.

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1153
Author(s):  
Jutta Ludwig-Müller ◽  
Roman Rattunde ◽  
Sabine Rößler ◽  
Katja Liedel ◽  
Freia Benade ◽  
...  

With the introduction of the new auxinic herbicide halauxifen-methyl into the oilseed rape (Brassica napus) market, there is a need to understand how this new molecule interacts with indigenous plant hormones (e.g., IAA) in terms of crop response. The aim of this study was to investigate the molecular background by using different growth conditions under which three different auxinic herbicides were administered. These were halauxifen-methyl (Hal), alone and together with aminopyralid (AP) as well as picloram (Pic). Three different hormone classes were determined, free and conjugated indole-3-acetic acid (IAA), aminocyclopropane carboxylic acid (ACC) as a precursor for ethylene, and abscisic acid (ABA) at two different temperatures and growth stages as well as over time (2–168 h after treatment). At 15 °C growth temperature, the effect was more pronounced than at 9 °C, and generally, the younger leaves independent of the developmental stage showed a larger effect on the alterations of hormones. IAA and ACC showed reproducible alterations after auxinic herbicide treatments over time, while ABA did not. Finally, a transcriptome analysis after treatment with two auxinic herbicides, Hal and Pic, showed different expression patterns. Hal treatment leads to the upregulation of auxin and hormone responses at 48 h and 96 h. Pic treatment induced the hormone/auxin response already after 2 h, and this continued for the other time points. The more detailed analysis of the auxin response in the datasets indicate a role for GH3 genes and genes encoding auxin efflux proteins. The upregulation of the GH3 genes correlates with the increase in conjugated IAA at the same time points and treatments. Also, genes for were found that confirm the upregulation of the ethylene pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pajaree Sonsungsan ◽  
Pheerawat Chantanakool ◽  
Apichat Suratanee ◽  
Teerapong Buaboocha ◽  
Luca Comai ◽  
...  

Salinity is an important environmental factor causing a negative effect on rice production. To prevent salinity effects on rice yields, genetic diversity concerning salt tolerance must be evaluated. In this study, we investigated the salinity responses of rice (Oryza sativa) to determine the critical genes. The transcriptomes of ‘Luang Pratahn’ rice, a local Thai rice variety with high salt tolerance, were used as a model for analyzing and identifying the key genes responsible for salt-stress tolerance. Based on 3' Tag-Seq data from the time course of salt-stress treatment, weighted gene co-expression network analysis was used to identify key genes in gene modules. We obtained 1,386 significantly differentially expressed genes in eight modules. Among them, six modules indicated a significant correlation within 6, 12, or 48h after salt stress. Functional and pathway enrichment analysis was performed on the co-expressed genes of interesting modules to reveal which genes were mainly enriched within important functions for salt-stress responses. To identify the key genes in salt-stress responses, we considered the two-state co-expression networks, normal growth conditions, and salt stress to investigate which genes were less important in a normal situation but gained more impact under stress. We identified key genes for the response to biotic and abiotic stimuli and tolerance to salt stress. Thus, these novel genes may play important roles in salinity tolerance and serve as potential biomarkers to improve salt tolerance cultivars.


2020 ◽  
Vol 61 (6) ◽  
pp. 1028-1040
Author(s):  
Dan Pereksta ◽  
Dillon King ◽  
Fahmida Saki ◽  
Amith Maroli ◽  
Elizabeth Leonard ◽  
...  

Abstract Cellular homeostasis is maintained by the proteasomal degradation of regulatory and misfolded proteins, which sustains the amino acid pool. Although proteasomes alleviate stress by removing damaged proteins, mounting evidence indicates that severe stress caused by salt, metal(oids), and some pathogens can impair the proteasome. However, the consequences of proteasome inhibition in plants are not well understood and even less is known about how its malfunctioning alters metabolic activities. Lethality causes by proteasome inhibition in non-photosynthetic organisms stem from amino acid depletion, and we hypothesized that plants respond to proteasome inhibition by increasing amino acid biosynthesis. To address these questions, the short-term effects of proteasome inhibition were monitored for 3, 8 and 48 h in the roots of Brassica napus treated with the proteasome inhibitor MG132. Proteasome inhibition did not affect the pool of free amino acids after 48 h, which was attributed to elevated de novo amino acid synthesis; these observations coincided with increased levels of sulfite reductase and nitrate reductase activities at earlier time points. However, elevated amino acid synthesis failed to fully restore protein synthesis. In addition, transcriptome analysis points to perturbed abscisic acid signaling and decreased sugar metabolism after 8 h of proteasome inhibition. Proteasome inhibition increased the levels of alternative oxidase but decreased aconitase activity, most sugars and tricarboxylic acid metabolites in root tissue after 48 h. These metabolic responses occurred before we observed an accumulation of reactive oxygen species. We discuss how the metabolic response to proteasome inhibition and abiotic stress partially overlap in plants.


2014 ◽  
Vol 54 (9) ◽  
pp. 1436 ◽  
Author(s):  
B. P. Dalrymple ◽  
B. Guo ◽  
G. H. Zhou ◽  
W. Zhang

Intramuscular fat content (IMF%) in cattle influences the value of individual animals, especially for higher marbling markets. IMF is triacylglyceride (TAG) in lipid droplets in the intramuscular adipocytes. However, there are many different pathways from feed intake to the final common process of TAG synthesis and storage as IMF. To evaluate the relative importance of different pathways we compared changes in the expression of genes encoding proteins involved in the TAG and fatty acid (FA) synthesis pathways in the longissimus muscle of Piedmontese × Hereford (P×H) and Wagyu × Hereford (W×H) crosses. Based on these changes we have estimated the relative contributions of FA synthesised de novo in the intramuscular adipocyte and the uptake of circulating FA (both free and from TAG), from the diet or synthesised de novo in other tissues, to TAG deposition as IMF. We have analysed the impact of different developmental times and different diets on these processes. Increased de novo FA synthesis in intramuscular adipocytes appeared to contribute more than increased FA uptake from circulation to the additional TAG deposition in W×H compared with P×H cattle between 12 and 25 months (forage diet). Changing diet from forage to concentrate appeared to increase the importance of FA uptake from circulation relative to de novo FA synthesis for TAG synthesis in intramuscular adipocytes. These results are consistent with the literature based on analysis of lipid composition. Gene expression appears to provide a simple assay for identification of the source of FA for the deposition of IMF.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Yubing Liu ◽  
Wei Zou ◽  
Peiguo Yang ◽  
Li Wang ◽  
Yan Ma ◽  
...  

Ribosome degradation through the autophagy-lysosome pathway is crucial for cell survival during nutrient starvation, but whether it occurs under normal growth conditions and contributes to animal physiology remains unaddressed. In this study, we identified RNST-2, a C. elegans T2 family endoribonuclease, as the key enzyme that degrades ribosomal RNA in lysosomes. We found that loss of rnst-2 causes accumulation of rRNA and ribosomal proteins in enlarged lysosomes and both phenotypes are suppressed by blocking autophagy, which indicates that RNST-2 mediates autophagic degradation of ribosomal RNA in lysosomes. rnst-2(lf) mutants are defective in embryonic and larval development and are short-lived. Remarkably, simultaneous loss of RNST-2 and de novo synthesis of pyrimidine nucleotides leads to complete embryonic lethality, which is suppressed by supplements of uridine or cytidine. Our study reveals an essential role of autophagy-dependent degradation of ribosomal RNA in maintaining nucleotide homeostasis during animal development.


1998 ◽  
Vol 64 (5) ◽  
pp. 1805-1811 ◽  
Author(s):  
B. S. Rajagopal ◽  
Joseph DePonte ◽  
Mendel Tuchman ◽  
Michael H. Malamy

ABSTRACT The goal of this work was to construct Escherichia colistrains capable of enhanced arginine production. The arginine biosynthetic capacity of previously engineered E. colistrains with a derepressed arginine regulon was limited by the availability of endogenous ornithine (M. Tuchman, B. S. Rajagopal, M. T. McCann, and M. H. Malamy, Appl. Environ. Microbiol. 63:33–38, 1997). Ornithine biosynthesis is limited due to feedback inhibition by arginine of N-acetylglutamate synthetase (NAGS), the product of the argA gene and the first enzyme in the pathway of arginine biosynthesis in E. coli. To circumvent this inhibition, the argA genes from E. coli mutants with feedback-resistant (fbr) NAGS were cloned into plasmids that contain “arg boxes,” which titrate the ArgR repressor protein, with or without the E. coli carABgenes encoding carbamyl phosphate synthetase and the argIgene for ornithine transcarbamylase. The free arginine production rates of “arg-derepressed” E. coli cells overexpressing plasmid-encoded carAB, argI, and fbr argA genes were 3- to 15-fold higher than that of an equivalent system overexpressing feedback-sensitive wild-type (wt)argA. The expression system with fbr argAproduced 7- to 35-fold more arginine than a system overexpressingcarAB and argI genes on a plasmid in a strain with a wt argA gene on the chromosome. The arginine biosynthetic capacity of arg-derepressed DH5α strains with plasmids containing only the fbr argA gene was similar to that of cells with plasmids also containing the carABand argI genes. Plasmids containing wt or fbrargA were stably maintained under normal growth conditions for at least 18 generations. DNA sequencing identified different point mutations in each of the fbr argA mutants, specifically H15Y, Y19C, S54N, R58H, G287S, and Q432R.


2021 ◽  
Author(s):  
Laura Kathrine Perby ◽  
Simon Richter ◽  
Konrad Weber ◽  
Alina Johanna Hieber ◽  
Natalia Hess ◽  
...  

Abstract Background and Aims ATP-dependent phosphofructokinases (PFKs) catalyse phosphorylation of the carbon-1 position of fructose-6-phosphate, to form fructose-1,6-bisphosphate. In the cytosol, this is considered a key step in channelling carbon into glycolysis. Arabidopsis thaliana has seven genes encoding PFK isoforms, two chloroplastic and five cytosolic. This study focusses on the four major cytosolic isoforms of PFK in vegetative tissues of A. thaliana. Methods We have isolated homozygous knock-out individual mutants (pfk1, pfk3, pfk6, pfk7) and two double mutants (pfk1/7 and pfk3/6) and characterized their growth and metabolic phenotypes. Key Results In contrast to single mutants and the double mutant pfk3/6 for the hypoxia-responsive isoforms, the double mutant pfk1/7 had reduced PFK activity and shows a clear visual and metabolic phenotype with reduced shoot growth, early flowering, and elevated hexose levels. This mutant also has an altered ratio of short/long aliphatic glucosinolates and an altered root-shoot distribution. Surprisingly, this mutant does not show any major changes in short-term carbon flux and in levels of hexose-phosphates. Conclusions We conclude that the two isoforms PFK1 and PFK7 are important for sugar homeostasis in leaf metabolism and apparently source/sink relations in Arabidopsis, while PFK3 and PFK6 only play a minor role under normal growth conditions.


2017 ◽  
Vol 44 (5) ◽  
pp. 473 ◽  
Author(s):  
Jesper T. Pedersen ◽  
Michael Palmgren

The purpose of this minireview is to discuss the feasibility of creating a new generation of salt-tolerant plants that express Na+/K+-ATPases from animals or green algae. Attempts to generate salt-tolerant plants have focussed on increase the expression of or introducing salt stress-related genes from plants, bryophytes and yeast. Even though these approaches have resulted in plants with increased salt tolerance, plant growth is decreased under salt stress and often also under normal growth conditions. New strategies to increase salt tolerance are therefore needed. Theoretically, plants transformed with an animal-type Na+/K+-ATPase should not only display a high degree of salt tolerance but should also reduce the stress response exhibited by the first generation of salt-tolerant plants under both normal and salt stress conditions. The biological feasibility of such a strategy of producing transgenic plants that display improved growth on saline soil but are indistinguishable from wild-type plants under normal growth conditions, is discussed.


2006 ◽  
Vol 188 (19) ◽  
pp. 6802-6807 ◽  
Author(s):  
Clemente I. Montero ◽  
Derrick L. Lewis ◽  
Matthew R. Johnson ◽  
Shannon B. Conners ◽  
Elizabeth A. Nance ◽  
...  

ABSTRACT In the genome of the hyperthermophilic bacterium Thermotoga maritima, TM0504 encodes a putative signaling peptide implicated in population density-dependent exopolysaccharide formation. Although not noted in the original genome annotation, TM0504 was found to colocate, on the opposite strand, with the gene encoding ssrA, a hybrid of tRNA and mRNA (tmRNA), which is involved in a trans-translation process related to ribosome rescue and is ubiquitous in bacteria. Specific DNA probes were designed and used in real-time PCR assays to follow the separate transcriptional responses of the colocated open reading frames (ORFs) during transition from exponential to stationary phase, chloramphenicol challenge, and syntrophic coculture with Methanococcus jannaschii. TM0504 transcription did not vary under normal growth conditions. Transcription of the tmRNA gene, however, was significantly up-regulated during chloramphenicol challenge and in T. maritima bound in exopolysaccharide aggregates during methanogenic coculture. The significance of the colocation of ORFs encoding a putative signaling peptide and tmRNA in T. maritima is intriguing, since this overlapping arrangement (tmRNA associated with putative small ORFs) was found to be conserved in at least 181 bacterial genomes sequenced to date. Whether peptides related to TM0504 in other bacteria play a role in quorum sensing is not yet known, but their ubiquitous colocalization with respect to tmRNA merits further examination.


2005 ◽  
Vol 33 (4) ◽  
pp. 743-746 ◽  
Author(s):  
K.M. Coxon ◽  
E. Chakauya ◽  
H.H. Ottenhof ◽  
H.M. Whitney ◽  
T.L. Blundell ◽  
...  

Pantothenate (vitamin B5) is a water-soluble vitamin essential for the synthesis of CoA and ACP (acyl-carrier protein, cofactors in energy yielding reactions including carbohydrate metabolism and fatty acid synthesis. Pantothenate is synthesized de novo by plants and micro-organisms; however, animals obtain the vitamin through their diet. Utilizing our knowledge of the pathway in Escherichia coli, we have discovered and cloned genes encoding the first and last enzymes of the pathway from Arabidopsis, panB1, panB2 and panC. It is unlikely that there is a homologue of the E. coli panD gene, therefore plants must make β-alanine by an alternative route. Possible candidates for the remaining gene, panE, are being investigated. GFP (green fluorescent protein) fusions of the three identified plant enzymes have been generated and the subcellular localization of the enzymes studied. Work is now being performed to elucidate expression patterns of the transcripts and characterize the proteins encoded by these genes.


Sign in / Sign up

Export Citation Format

Share Document