scholarly journals Molecular Network and Culture Media Variation Reveal a Complex Metabolic Profile in Pantoea cf. eucrina D2 Associated with an Acidified Marine Sponge

2020 ◽  
Vol 21 (17) ◽  
pp. 6307
Author(s):  
Giovanni Andrea Vitale ◽  
Martina Sciarretta ◽  
Chiara Cassiano ◽  
Carmine Buonocore ◽  
Carmen Festa ◽  
...  

The Gram-negative Pantoea eucrina D2 was isolated from the marine sponge Chondrosia reniformis. Sponges were collected in a shallow volcanic vents system in Ischia island (South Italy), influenced by CO2 emissions and lowered pH. The chemical diversity of the secondary metabolites produced by this strain, under different culture conditions, was explored by a combined approach including molecular networking, pure compound isolation and NMR spectroscopy. The metabolome of Pantoea cf. eucrina D2 yielded a very complex molecular network, allowing the annotation of several metabolites, among them two biosurfactant clusters: lipoamino acids and surfactins. The production of each class of metabolites was highly dependent on the culture conditions, in particular, the production of unusual surfactins derivatives was reported for the first time from this genus; interestingly the production of these metabolites only arises by utilizing inorganic nitrogen as a sole nitrogen source. Major components of the extract obtained under standard medium culture conditions were isolated and identified as N-lipoamino acids by a combination of 1D and 2D NMR spectroscopy and HRESI-MS analysis. Assessment of the antimicrobial activity of the pure compounds towards some human pathogens, indicated a moderate activity of leucine containing N-lipoamino acids towards Staphylococcus aureus, Staphylococcus epidermidis and a clinical isolate of the emerging food pathogen Listeria monocytogenes.

Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 444
Author(s):  
Téo Hebra ◽  
Nicolas Elie ◽  
Salomé Poyer ◽  
Elsa Van Elslande ◽  
David Touboul ◽  
...  

Microorganisms associated with termites are an original resource for identifying new chemical scaffolds or active metabolites. A molecular network was generated from a collection of strain extracts analyzed by liquid chromatography coupled to tandem high-resolution mass spectrometry, a molecular network was generated, and activities against the human pathogens methicillin-resistant Staphylococcus aureus, Candida albicans and Trichophyton rubrum were mapped, leading to the selection of a single active extract of Penicillium sclerotiorum SNB-CN111. This fungal species is known to produce azaphilones, a colorful family of polyketides with a wide range of biological activities and economic interests in the food industry. By exploring the molecular network data, it was shown that the chemical diversity related to the P. sclerotiorum metabolome largely exceeded the data already reported in the literature. According to the described fragmentation pathways of protonated azaphilones, the annotation of 74 azaphilones was proposed, including 49 never isolated or synthesized thus far. Our hypothesis was validated by the isolation and characterization of eight azaphilones, among which three new azaphilones were chlorogeumasnol (63), peniazaphilone E (74) and 7-deacetylisochromophilone VI (80).


Marine Drugs ◽  
2019 ◽  
Vol 17 (7) ◽  
pp. 419 ◽  
Author(s):  
Lars-Erik Petersen ◽  
Michael Marner ◽  
Antje Labes ◽  
Deniz Tasdemir

Zostera marina (eelgrass) is a marine foundation species with key ecological roles in coastal habitats. Its bacterial microbiota has been well studied, but very little is known about its mycobiome. In this study, we have isolated and identified 13 fungal strains, dominated by Penicillium species (10 strains), from the leaf and the root rhizosphere of Baltic Z. marina. The organic extracts of the fungi that were cultured by an OSMAC (One-Strain–Many-Compounds) regime using five liquid culture media under both static and shaking conditions were investigated for their chemical and bioactivity profiles. All extracts showed strong anti-quorum sensing activity, and the majority of the Penicillium extracts displayed antimicrobial or anti-biofilm activity against Gram-negative environmental marine and human pathogens. HPLC-DAD-MS-based rapid metabolome analyses of the extracts indicated the high influence of culture conditions on the secondary metabolite (SM) profiles. Among 69 compounds detected in all Penicillium sp. extracts, 46 were successfully dereplicated. Analysis of SM relatedness in culture conditions by Hierarchical Cluster Analysis (HCA) revealed generally low similarity and showed a strong effect of medium selection on chemical profiles of Penicillium sp. This is the first study assessing both the metabolite and bioactivity profile of the fungi associated with Baltic eelgrass Z. marina.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 378
Author(s):  
Van-Tuyen Le ◽  
Samuel Bertrand ◽  
Thibaut Robiou du Pont ◽  
Fabrice Fleury ◽  
Nathalie Caroff ◽  
...  

Very little is known about chemical interactions between fungi and their mollusc host within marine environments. Here, we investigated the metabolome of a Penicillium restrictum MMS417 strain isolated from the blue mussel Mytilus edulis collected on the Loire estuary, France. Following the OSMAC approach with the use of 14 culture media, the effect of salinity and of a mussel-derived medium on the metabolic expression were analysed using HPLC-UV/DAD-HRMS/MS. An untargeted metabolomics study was performed using principal component analysis (PCA), orthogonal projection to latent structure discriminant analysis (O-PLSDA) and molecular networking (MN). It highlighted some compounds belonging to sterols, macrolides and pyran-2-ones, which were specifically induced in marine conditions. In particular, a high chemical diversity of pyran-2-ones was found to be related to the presence of mussel extract in the culture medium. Mass spectrometry (MS)- and UV-guided purification resulted in the isolation of five new natural fungal pyran-2-one derivatives—5,6-dihydro-6S-hydroxymethyl-4-methoxy-2H-pyran-2-one (1), (6S, 1’R, 2’S)-LL-P880β (3), 5,6-dihydro-4-methoxy-6S-(1’S, 2’S-dihydroxy pent-3’(E)-enyl)-2H-pyran-2-one (4), 4-methoxy-6-(1’R, 2’S-dihydroxy pent-3’(E)-enyl)-2H-pyran-2-one (6) and 4-methoxy-2H-pyran-2-one (7)—together with the known (6S, 1’S, 2’S)-LL-P880β (2), (1’R, 2’S)-LL-P880γ (5), 5,6-dihydro-4-methoxy-2H-pyran-2-one (8), (6S, 1’S, 2’R)-LL-P880β (9), (6S, 1’S)-pestalotin (10), 1’R-dehydropestalotin (11) and 6-pentyl-4-methoxy-2H-pyran-2-one (12) from the mussel-derived culture medium extract. The structures of 1-12 were determined by 1D- and 2D-MMR experiments as well as high-resolution tandem MS, ECD and DP4 calculations. Some of these compounds were evaluated for their cytotoxic, antibacterial, antileishmanial and in-silico PTP1B inhibitory activities. These results illustrate the utility in using host-derived media for the discovery of new natural products.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 206
Author(s):  
Kuei-Hung Lai ◽  
Zheng-Hao Huang ◽  
Mohamed El-Shazly ◽  
Bo-Rong Peng ◽  
Wen-Chi Wei ◽  
...  

The marine sponge of the genus Geodia, Jaspis, Rhabdastrella, and Stelletta are characterized chemically by a variety of isomalabaricane triterpenes. This class of compounds drew spotlights in marine lead discovery due to their profound anti-proliferative properties. Further research on exploring its chemical diversity led to the identifications of two new isomalabaricane-type triterpenes rhabdastin H (1) and rhabdastin I (2). Their structures were unraveled using a series of spectroscopic approaches. These isolates were found to exhibit unique structural features with the only reported tetrahydrofuran functionality among all marine-derived isomalabaricanes. Both compounds 1 and 2 showed activities against K562 (IC50 11.7 and 9.8 μM) and Molt4 (IC50 16.5 and 11.0 μM) leukemic cells in MTT cell proliferative assay.


2021 ◽  
Vol 10 (15) ◽  
pp. 3249
Author(s):  
Annelies W. Mesman ◽  
Seung-Hun Baek ◽  
Chuan-Chin Huang ◽  
Young-Mi Kim ◽  
Sang-Nae Cho ◽  
...  

An estimated 15–20% of patients who are treated for pulmonary tuberculosis (TB) are culture-negative at the time of diagnosis. Recent work has focused on the existence of differentially detectable Mycobacterium tuberculosis (Mtb) bacilli that do not grow under routine solid culture conditions without the addition of supplementary stimuli. We identified a cohort of TB patients in Lima, Peru, in whom acid-fast bacilli could be detected by sputum smear microscopy, but from whom Mtb could not be grown in standard solid culture media. When we attempted to re-grow Mtb from the frozen sputum samples of these patients, we found that 10 out of 15 could be grown in a glycerol-poor/lipid-rich medium. These fell into the following two groups: a subset that could be regrown in glycerol after “lipid-resuscitation”, and a group that displayed a heritable glycerol-sensitive phenotype that were unable to grow in the presence of this carbon source. Notably, all of the glycerol-sensitive strains were found to be multidrug resistant. Although whole-genome sequencing of the lipid-resuscitated strains identified 20 unique mutations compared to closely related strains, no single genetic lesion could be associated with this phenotype. In summary, we found that lipid-based media effectively fostered the growth of Mtb from a series of sputum smear-positive samples that were not culturable in glycerol-based Lowenstein–Jensen or 7H9 media, which is consistent with Mtb’s known preference for non-glycolytic sources during infection. Analysis of the recovered strains demonstrated that both genetic and non-genetic mechanisms contribute to the observed differential capturability, and suggested that this phenotype may be associated with drug resistance.


2017 ◽  
Vol 131 (13) ◽  
pp. 1393-1404 ◽  
Author(s):  
Anastasia Korolj ◽  
Erika Yan Wang ◽  
Robert A. Civitarese ◽  
Milica Radisic

Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 109
Author(s):  
Alexander Lammers ◽  
Michael Lalk ◽  
Paolina Garbeva

We are currently facing an antimicrobial resistance crisis, which means that a lot of bacterial pathogens have developed resistance to common antibiotics. Hence, novel and innovative solutions are urgently needed to combat resistant human pathogens. A new source of antimicrobial compounds could be bacterial volatiles. Volatiles are ubiquitous produced, chemically divers and playing essential roles in intra- and interspecies interactions like communication and antimicrobial defense. In the last years, an increasing number of studies showed bioactivities of bacterial volatiles, including antibacterial, antifungal and anti-oomycete activities, indicating bacterial volatiles as an exciting source for novel antimicrobial compounds. In this review we introduce the chemical diversity of bacterial volatiles, their antimicrobial activities and methods for testing this activity. Concluding, we discuss the possibility of using antimicrobial volatiles to antagonize the antimicrobial resistance crisis.


2021 ◽  
Vol 10 (2) ◽  
pp. 105-110
Author(s):  
Abdulbasit Haliru Yakubu ◽  
Mohammed Mustapha Mohammed ◽  
Abdulqadir Bukar Bababe ◽  
Hassan Yesufu Braimah

Plant secondary metabolites have provided important bioactive principles for developing new lead compounds. Within their confinement, they exhibit unique chemical diversity, which influences their diverse biological properties. The Vitaceae family is known for its potent antioxidant and antibacterial phytoconstituents, among other biological properties. Cyphostemma adenocaule is one of the family members explored for its ethnomedicinal properties. This study undertook the evaluation of the phytochemical, antioxidant, and antibacterial properties of the root extract of Cyphostemma adenocaule. Preliminary phytochemical screening revealed the presence of flavonoids, alkaloids, carbohydrates & glycoside, saponins, and tannins. The methanol root extract had the highest activity in the DPPH assay, providing IC50 (50% inhibition) of 10.87µg/ml, followed by n-Hexane (IC50 74.10µg/ml) and chloroform (IC50 74.31µg/ml) extract. In the antibacterial assay, the chloroform extract was active against E. coli (24.00±0.15) and had moderate activity against Staph. aureus (12.5±0.18). The n-Hexane extract was completely inactive against the test organisms while the methanol extract showed poor activity against the test organisms. The present study adds to the existing literature on Cyphostemma adenocaule with scientific evidence into its biological properties.


Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Sandra Guallar-Garrido ◽  
Farners Almiñana-Rapún ◽  
Víctor Campo-Pérez ◽  
Eduard Torrents ◽  
Marina Luquin ◽  
...  

Mycobacterium bovis bacillus Calmette-Guérin (BCG) efficacy as an immunotherapy tool can be influenced by the genetic background or immune status of the treated population and by the BCG substrain used. BCG comprises several substrains with genetic differences that elicit diverse phenotypic characteristics. Moreover, modifications of phenotypic characteristics can be influenced by culture conditions. However, several culture media formulations are used worldwide to produce BCG. To elucidate the influence of growth conditions on BCG characteristics, five different substrains were grown on two culture media, and the lipidic profile and physico-chemical properties were evaluated. Our results show that each BCG substrain displays a variety of lipidic profiles on the outermost surface depending on the growth conditions. These modifications lead to a breadth of hydrophobicity patterns and a different ability to reduce neutral red dye within the same BCG substrain, suggesting the influence of BCG growth conditions on the interaction between BCG cells and host cells.


Sign in / Sign up

Export Citation Format

Share Document