scholarly journals Evaluation of Haptoglobin and Its Proteoforms as Glioblastoma Markers

2021 ◽  
Vol 22 (12) ◽  
pp. 6533
Author(s):  
Stanislav Naryzhny ◽  
Natalia Ronzhina ◽  
Elena Zorina ◽  
Fedor Kabachenko ◽  
Maria Zavialova ◽  
...  

Haptoglobin (Hp) is a blood plasma glycoprotein that plays a critical role in tissue protection and the prevention of oxidative damage. Haptoglobin is an acute-phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein and is the subject of research as a potential biomarker of many diseases, including malignant neoplasms. The Human Hp gene is polymorphic and controls the synthesis of three major phenotypes—homozygous Hp1-1 and Hp2-2, and heterozygous Hp2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual’s predisposition to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). Glioblastoma multiform (GBM) is the most malignant primary brain tumor. In our study, we have analyzed the state of Hp proteoforms in plasma and cells using 1D (SDS-PAGE) and 2D electrophoresis (2DE) with the following mass spectrometry (LC ES-MS/MS) or Western blotting. We found that the levels of α2- and β-chain proteoforms are up-regulated in the plasma of GBM patients. An unprocessed form of Hp2-2 (PreHp2-2, zonulin) with unusual biophysical parameters (pI/Mw) was also detected in the plasma of GBM patients and glioblastoma cells. Altogether, this data shows the possibility to use proteoforms of haptoglobin as a potential GBM-specific plasma biomarker.

2021 ◽  
Vol 67 (2) ◽  
pp. 105-118
Author(s):  
S.N. Naryzhny ◽  
O.K. Legina

Haptoglobin (Hp) is a blood plasma glycoprotein that binds free hemoglobin (Hb) and plays a critical role in tissue protection and the prevention of oxidative damage. In addition, it has a number of regulatory functions. Haptoglobin is an acute phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein synthesized mainly in the liver and lungs and is the subject of research as a potential biomarker of many diseases, including various forms of malignant neoplasms. Haptoglobin has several unique biophysical characteristics. Only in humans, the Hp gene is polymorphic, has three structural alleles that control the synthesis of three major phenotypes of Hp, homozygous Hp1-1 and Hp2-2, and heterozygous Hp2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual's predisposition to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). These are structural transformations (removal of the signal peptide, cutting of the Pre-Hp precursor molecule into two subunits, α and β, limited proteolysis of α-chains, formation of disulfide bonds, multimerization), as well as chemical modifications of α-chains and glycosylation of the β-chain. Glycosylation of the β-chain of haptoglobin at four Asn sites is the most important variable PTM that regulates the structure and function of the glycoprotein. The study of modified oligosaccharides of the Hp β-chain has become the main direction in the study of pathological processes, including malignant neoplasms. Many studies are focused on the identification of PTM and changes in the level of the α2-chain of this protein in pathology. These characteristics of Hp indicate the possibility of the existence of this protein as different proteoforms, probably with different functions. This review is devoted to the description of the structural and functional diversity of Hp and its potential use as a biomarker of various pathologies.


2019 ◽  
Vol 15 (2) ◽  
pp. 120-130
Author(s):  
Mohammad Ghanbari ◽  
Reza Safaralizadeh ◽  
Kiyanoush Mohammadi

At the present time, cancer is one of the most lethal diseases worldwide. There are various factors involved in the development of cancer, including genetic factors, lifestyle, nutrition, and so on. Recent studies have shown that epigenetic factors have a critical role in the initiation and development of tumors. The histone post-translational modifications (PTMs) such as acetylation, methylation, phosphorylation, and other PTMs are important mechanisms that regulate the status of chromatin structure and this regulation leads to the control of gene expression. The histone acetylation is conducted by histone acetyltransferase enzymes (HATs), which are involved in transferring an acetyl group to conserved lysine amino acids of histones and consequently increase gene expression. On the basis of similarity in catalytic domains of HATs, these enzymes are divided into different groups such as families of GNAT, MYST, P300/CBP, SRC/P160, and so on. These enzymes have effective roles in apoptosis, signaling pathways, metastasis, cell cycle, DNA repair and other related mechanisms deregulated in cancer. Abnormal activation of HATs leads to uncontrolled amplification of cells and incidence of malignancy signs. This indicates that HAT might be an important target for effective cancer treatments, and hence there would be a need for further studies and designing of therapeutic drugs on this basis. In this study, we have reviewed the important roles of HATs in different human malignancies.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3143
Author(s):  
Sergey E. Parfenyev ◽  
Sergey V. Shabelnikov ◽  
Danila Y. Pozdnyakov ◽  
Olga O. Gnedina ◽  
Leonid S. Adonin ◽  
...  

Breast cancer is the most frequently diagnosed malignant neoplasm and the second leading cause of cancer death among women. Epithelial-to-mesenchymal Transition (EMT) plays a critical role in the organism development, providing cell migration and tissue formation. However, its erroneous activation in malignancies can serve as the basis for the dissemination of cancer cells and metastasis. The Zeb1 transcription factor, which regulates the EMT activation, has been shown to play an essential role in malignant transformation. This factor is involved in many signaling pathways that influence a wide range of cellular functions via interacting with many proteins that affect its transcriptional functions. Importantly, the interactome of Zeb1 depends on the cellular context. Here, using the inducible expression of Zeb1 in epithelial breast cancer cells, we identified a substantial list of novel potential Zeb1 interaction partners, including proteins involved in the formation of malignant neoplasms, such as ATP-dependent RNA helicase DDX17and a component of the NURD repressor complex, CTBP2. We confirmed the presence of the selected interactors by immunoblotting with specific antibodies. Further, we demonstrated that co-expression of Zeb1 and CTBP2 in breast cancer patients correlated with the poor survival prognosis, thus signifying the functionality of the Zeb1–CTBP2 interaction.


2021 ◽  
pp. 026988112199199 ◽  
Author(s):  
Miriam Sebold ◽  
Maria Garbusow ◽  
Deniz Cerci ◽  
Ke Chen ◽  
Christian Sommer ◽  
...  

Background: Pavlovian-to-instrumental transfer (PIT) quantifies the extent to which a stimulus that has been associated with reward or punishment alters operant behaviour. In alcohol dependence (AD), the PIT effect serves as a paradigmatic model of cue-induced relapse. Preclinical studies have suggested a critical role of the opioid system in modulating Pavlovian–instrumental interactions. The A118G polymorphism of the OPRM1 gene affects opioid receptor availability and function. Furthermore, this polymorphism interacts with cue-induced approach behaviour and is a potential biomarker for pharmacological treatment response in AD. In this study, we tested whether the OPRM1 polymorphism is associated with the PIT effect and relapse in AD. Methods: Using a PIT task, we examined three independent samples: young healthy subjects ( N = 161), detoxified alcohol-dependent patients ( N = 186) and age-matched healthy controls ( N = 105). We used data from a larger study designed to assess the role of learning mechanisms in the development and maintenance of AD. Subjects were genotyped for the A118G (rs1799971) polymorphism of the OPRM1 gene. Relapse was assessed after three months. Results: In all three samples, participants with the minor OPRM1 G-Allele (G+ carriers) showed increased expression of the PIT effect in the absence of learning differences. Relapse was not associated with the OPRM1 polymorphism. Instead, G+ carriers displaying increased PIT effects were particularly prone to relapse. Conclusion: These results support a role for the opioid system in incentive salience motivation. Furthermore, they inform a mechanistic model of aberrant salience processing and are in line with the pharmacological potential of opioid receptor targets in the treatment of AD.


Author(s):  
Mingyi Zhou ◽  
Zhuo Yang ◽  
Danbo Wang ◽  
Peng Chen ◽  
Yong Zhang

Abstract Background As a novel type of non-coding RNA, circular RNAs (circRNAs) play a critical role in the initiation and development of various diseases, including cancer. However, the exact function of circRNAs in human cervical cancer remains largely unknown. Methods We identified the circRNA signature of upregulated circRNAs between cervical cancer and paired adjacent normal tissues. Using two different cohorts and GEO database, a total of six upregulated circRNAs were identified with a fold change > 2, and P < 0.05. Among these six circRNAs, hsa_circ_0072088 (circZFR) was the only exonic circRNA significantly overexpressed in cervical cancer. Functional experiments were performed to investigate the biological function of circZFR. CircRNA pull-down, circRNA immunoprecipitation (circRIP) and Co-immunoprecipitation (Co-IP) assays were executed to investigate the molecular mechanism underlying the function of circZFR. Results Functionally, circZFR knockdown represses the proliferation, invasion, and tumor growth. Furthermore, circRNA pull-down experiments combined with mass spectrometry unveil the interactions of circZFR with Single-Stranded DNA Binding Protein 1 (SSBP1). Mechanistically, circZFR bound with SSBP1, thereby promoting the assembly of CDK2/cyclin E1 complexes. The activation of CDK2/cyclin E1 complexes induced p-Rb phosphorylation, thus releasing activated E2F1 leading to cell cycle progression and cell proliferation. Conclusion Our findings provide the first evidence that circZFR is a novel onco-circRNA and might be a potential biomarker and therapeutic target for cervical cancer patients.


2011 ◽  
Vol 114 (3) ◽  
pp. 651-662 ◽  
Author(s):  
Hsin-I Ma ◽  
Shih-Hwa Chiou ◽  
Dueng-Yuan Hueng ◽  
Lung-Kuo Tai ◽  
Pin-I Huang ◽  
...  

Object Glioblastoma, the most common primary brain tumor, has a poor prognosis, even with aggressive resection and chemoradiotherapy. Recent studies indicate that CD133+ cells play a key role in radioresistance and recurrence of glioblastoma. Cyclooxygenase-2 (COX-2), which converts arachidonic acid to prostaglandins, is over-expressed in a variety of tumors, including CD133+ glioblastomas. The COX-2–derived prostaglandins promote neovascularization during tumor development, and conventional radiotherapy increases the proportion of CD133+ cells rather than eradicating them. The aim of the present study was to investigate the role of celecoxib, a selective COX-2 inhibitor, in enhancing the therapeutic effects of radiation on CD133+ glioblastomas. Methods Cells positive for CD133 were isolated from glioblastoma specimens and characterized by flow cytometry, then treated with celecoxib and/or ionizing radiation (IR). Clonogenic assay, cell irradiation, cell cycle analysis, Western blot, and xenotransplantation were used to assess the effects of celecoxib alone, IR alone, and IR with celecoxib on CD133+ and CD133− glioblastoma cells. Three separate xenotransplantation experiments were carried out using 310 severe combined immunodeficient (SCID) mice: 1) an initial tumorigenicity evaluation in which 3 different quantities of untreated CD133– cells or untreated or pretreated CD133+ cells (5 treatment conditions) from 7 different tumors were injected into the striatum of 2 mice (210 mice total); 2) a tumor growth study (50 mice); and 3) a survival study (50 mice). For these last 2 studies the same 5 categories of cells were used as in the tumorigenicity (untreated CD133– cells, untreated or pretreated CD133+ cells, with pretreatment consisting of celecoxib alone, IR alone, or IR and celecoxib), but only 1 cell source (Case 2) and quantity (5 × 104 cells) were used. Results High levels of COX-2 protein were detected in the CD133+ but not the CD133− glioblastoma cells. The authors further demonstrated that 30 μM celecoxib was able to effectively enhance the IR effect in inhibiting colony formation and increasing IR-mediated apoptosis in celecoxib-treated CD133+ glioblastoma cells. Furthermore, reduction in radioresistance was correlated with the induction of G2/M arrest, which was partially mediated through the increase in the level of phosphorylated-cdc2. In vivo xenotransplant analysis further confirmed that CD133+-associated tumorigenicity was significantly suppressed by celecoxib treatment. Importantly, pretreatment of CD133+ glioblastoma cells with a combination of celecoxib and IR before injection into the striatum of SCID mice resulted in a statistically significant reduction in tumor growth and a statistically significant increase in the mean survival rate of the mice. Conclusions Celecoxib combined with radiation plays a critical role in the suppression of growth of CD133+ glioblastoma stemlike cells. Celecoxib is therefore a radiosensitizing drug for clinical application in glioblastoma.


2018 ◽  
Vol 51 (1) ◽  
pp. 290-300 ◽  
Author(s):  
Chenxing Zhang ◽  
Chenyue Zhang ◽  
Jiamao Lin ◽  
Haiyong Wang

Background/Aims: An increasing number of studies have suggested that circular RNAs (circRNAs) have vital roles in carcinogenesis and tumor progression. However, the function of circRNAs in hepatocellular carcinoma (HCC) remains poorly characterized. Methods: We investigated the levels of circRNAs in patients with HCC to identify potential diagnostic biomarkers. We examined circRNA expression profiles in liver tumors and paired non-cancerous liver tissues from three HCC patients with cancer thrombus using a circRNA microarray. Bioinformatics analysis was performed to find circRNAs with significantly altered expression levels between tumors and their paired non-tumor tissues. We confirmed our initial findings by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Receiver operating characteristic (ROC) curves were also applied to identify a candidate circRNA with the optimal specificity and sensitivity. Finally, X-tile software was adopted to calculate the most efficient cut-off value for hsa_circ_0091579 expression. Results: Microarray analysis identified 20 unique circRNAs that were differentially expressed between tumor and non-tumor tissues (P < 0.05). The expression of these 20 circRNAs was verified by qRT-PCR. The expression of hsa_circ_16245-1 and hsa_circ_0091579 mRNA was consistent with their levels as tested by the microarray. The ROC curves showed that both hsa_circ_16245-1 and hsa_circ_0091579 had favorable specificity and sensitivity. We further confirmed that hsa_circ_0091579 was significantly upregulated in HCC and its high expression was intimately associated with a worse overall survival in patients with HCC. Conclusion: Hsa_circ_0091579 may play a critical role in HCC progression and serve as a potential biomarker for the prognosis of patients with HCC.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Karen de Morais-Zani ◽  
Kathleen Fernandes Grego ◽  
Aparecida Sadae Tanaka ◽  
Anita Mitico Tanaka-Azevedo

The ontogenetic variability in venom composition of some snake genera, including Bothrops, as well as the biological implications of such variability and the search of new molecules that can neutralize the toxic components of these venoms have been the subject of many studies. Thus, considering the resistance of Bothrops jararaca to the toxic action of its own venom and the ontogenetic variability in venom composition described in this species, a comparative study of the plasma composition of juvenile and adult B. jararaca snakes was performed through a proteomic approach based on 2D electrophoresis and mass spectrometry, which allowed the identification of proteins that might be present at different levels during ontogenetic development. Among the proteins identified by mass spectrometry, antihemorrhagic factor Bj46a was found only in adult plasma. Moreover, two spots identified as phospholipase A2 inhibitors were significantly increased in juvenile plasma, which can be related to the higher catalytic PLA2 activity shown by juvenile venom in comparison to that of adult snakes. This work shows the ontogenetic variability of B. jararaca plasma, and that these changes can be related to the ontogenetic variability described in its venom.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Zhifeng Qi ◽  
Ke Jian Liu

Fear of hemorrhage transformation (HT) has been the primary reason for withholding the effective recanalization therapies (thrombolysis or thrombectomy) from most acute ischemic stroke (AIS) patients. Currently there is no reliable indicator available to predict HT before recanalization. The degradation of tight junction proteins plays a critical role in blood-brain barrier (BBB) disruption in ischemic stroke. We hypothesize that since occludin fragment in peripheral blood is derived from the degradation of occludin on cerebral microvessels, elevated blood occludin level directly reflects BBB disruption and may serve as a biomarker for BBB damage to predict the risk of HT after recanalization. In this study, we determined occludin fragment in the blood of rats, non-human primates and human patients after AIS using ELISA assay, and evaluated its level with BBB damage, HT, and other neurological outcomes. We found that ischemia induced rapid occludin degradation and BBB disruption, while occludin fragment was released into the blood circulation. Cerebral ischemia resulted in a dramatic increase of occludin fragments in rat blood samples after 4-hr ischemia, which was correlated well with occludin loss from ischemic cerebral microvessels. In the blood sample from ischemic rhesus monkeys, occludin level significantly increased after 2h ischemia from baseline, which correlated well with brain infarction shown in MRI images. We further collected the sera of AIS patients as early as they arrived at hospital. Our results indicated that the level of occludin increased in accord with ischemia onset time and neurological dysfunctions. The level of blood occludin in AIS patients with HT was much higher that those without HT. Together, our findings from rats, non-human primates and patients suggest that the level of occludin fragment in blood could serve as a biomarker for HT and neurological outcome following AIS, which could be used to safely guide recanalization for AIS in the clinic.


2020 ◽  
Vol 29 (1) ◽  
pp. 39-50
Author(s):  
Kerong Wu ◽  
Linkun Hu ◽  
Xiuyi Lv ◽  
Junfeng Chen ◽  
Zejun Yan ◽  
...  

BACKGROUND: Long non-coding RNAs (lncRNAs) play important roles in cancer development, yet their roles in renal carcinoma remain unclear. OBJECTIVE: We performed this study in order to investigate the expression and roles of lncRNAs in renal cell carcinoma. METHODS: In this study, we investigated the expression of lncRNAs in renal cell carcinoma through microarray analysis. Quantitative real-time PCR was performed to measure the expression of lncRNAs. Gain- or loss-of-function experiments were performed to investigate the roles of lncRNAs in cell proliferation and apoptosis. RNA pull-down and western blotting were performed to explore the underlying mechanism. RESULTS: The microarray analysis identified an upregulated lncRNA MIR4435-1HG in renal carcinoma. The expression level of MIR4435-1HG was correlated with TNM stage, tumor size, and Fuhrman grade. High expression of MIR4435-1HG indicated poor prognosis. MIR4435-1HG knockdown inhibited cell proliferation, and suppressed the migrating and invasive capacity of renal carcinoma cells. RNA pull-down followed by mass spectrometry revealed an interaction between MIR4435-1HG and pyruvate carboxylase, which was later corroborated by western blotting. CONCLUSIONS: MIR4435-1HG plays a critical role in the oncogenesis of renal cell carcinoma and may serve as a potential biomarker for renal cell carcinoma.


Sign in / Sign up

Export Citation Format

Share Document