scholarly journals C-Terminal Fragment of Vitellogenin II, a Potential Yolkin Polypeptide Complex Precursor Protein—Heterologous Expression, Purification, and Immunoregulatory Activity

2021 ◽  
Vol 22 (13) ◽  
pp. 7223
Author(s):  
Agnieszka Szmyt ◽  
Agnieszka Zabłocka ◽  
Józefa Macała ◽  
Józefa Chrzanowska ◽  
Anna Dąbrowska

The aim of this research was to analyze the heterologous expression, purification, and immunoregulatory activity of recombinant YGP40 (rYGP40), the potential precursor of the yolkin peptide complex. The ygp40 coding sequence was codon optimized, successfully expressed in the E. coli system, and purified from inclusion bodies with a yield of about 1.1 mg/L of culture. This study showed that the protein exhibits immunomodulatory activity, expressed by the stimulation of TNF-α and IL-10 production and nitric oxide induction at a level comparable to that of the natural yolkin peptide complex obtained by other authors from hen egg yolk. At the highest dose of 100 µg/mL, rYGP40 also caused the up-regulation of iNOS expression in murine bone marrow-derived macrophages (BMDM). Moreover, no cytotoxic effects of rYGP40 on the BMDM cell line were observed.

2021 ◽  
Vol 28 ◽  
Author(s):  
Avtar Sain ◽  
Priyankar Sen ◽  
Krishnan Venkataraman ◽  
Mookambika A. Vijayalakshmi

Background: Anti-TNF-α scFv is gaining acceptance as an effective drug for various diseases such as rheumatoid arthritis and Crohn’s disease that involve elevated levels of TNF-α. The single-chain variable fragment (scFv) consists of variable regions of heavy and light chains of monoclonal antibodies (mAb). Due to its smaller size, it curbs the mAb’s auto-antibody effects and their limitation of penetration into the tissues during the neutralization of TNF-α. Objective: In this work, a cDNA coding for anti-TNF-α scFv was successfully cloned into a pRSET-B vector and efficiently expressed in an E. coli strain GJ1158, a salt inducible system that uses sodium chloride instead of IPTG as an inducer. Methods: The protein was expressed in the form of inclusion bodies (IB), solubilized using urea, and refolded by pulse dilution. Further, the amino acid sequence coverage of scFv was confirmed by ESI-Q-TOF MS/MS and MALDI-TOF. Further studies on scaling up the production of scFv and its application of scFv are being carried out Results: The soluble fraction of anti-TNF-α scFv was then purified in a single chromatographic step using CM-Sephadex chromatography, a weak cation exchanger with a yield of 10.3 mg/L. The molecular weight of the scFv was found to be ∼28 kDa by SDS PAGE, and its presence was confirmed by western blot analysis and mass spectrometry. Conclusion: Anti-TNF-α scFv has been successfully purified in a salt inducible system GJ1158. As per the best of our knowledge, this is the first report of purification of Anti-TNF-α scFv in a salt inducible system from soluble fractions as well as inclusion bodies.


Author(s):  
F. A. Durum ◽  
R. G. Goldman ◽  
T. J. Bolling ◽  
M. F. Miller

CMP-KDO synthetase (CKS) is an enzyme which plays a key role in the synthesis of LPS, an outer membrane component unique to gram negative bacteria. CKS activates KDO to CMP-KDO for incorporation into LPS. The enzyme is normally present in low concentrations (0.02% of total cell protein) which makes it difficult to perform large scale isolation and purification. Recently, the gene for CKS from E. coli was cloned and various recombinant DNA constructs overproducing CKS several thousandfold (unpublished data) were derived. Interestingly, no cytoplasmic inclusions of overproduced CKS were observed by EM (Fig. 1) which is in contrast to other reports of large proteinaceous inclusion bodies in various overproducing recombinant strains. The present immunocytochemical study was undertaken to localize CKS in these cells.Immune labeling conditions were first optimized using a previously described cell-free test system. Briefly, this involves soaking small blocks of polymerized bovine serum albumin in purified CKS antigen and subjecting them to various fixation, embedding and immunochemical conditions.


2020 ◽  
Vol 14 (4) ◽  
pp. 269-282
Author(s):  
Sadra S. Tehrani ◽  
Golnaz Goodarzi ◽  
Mohsen Naghizadeh ◽  
Seyyed H. Khatami ◽  
Ahmad Movahedpour ◽  
...  

Background: Granulocyte colony-stimulating factor (G-CSF) expressed in engineered Escherichia coli (E. coli) as a recombinant protein is utilized as an adjunct to chemotherapy for improving neutropenia. Recombinant proteins overexpression may lead to the creation of inclusion bodies whose recovery is a tedious and costly process. To overcome the problem of inclusion bodies, secretory production might be used. To achieve a mature secretory protein product, suitable signal peptide (SP) selection is a vital step. Objective: In the present study, we aimed at in silico evaluation of proper SPs for secretory production of recombinant G-CSF in E. coli. Methods: Signal peptide website and UniProt were used to collect the SPs and G-CSF sequences. Then, SignalP were utilized in order to predict the SPs and location of their cleavage site. Physicochemical features and solubility were investigated by ProtParam and Protein-sol tools. Fusion proteins sub-cellular localization was predicted by ProtCompB. Results: LPP, ELBP, TSH, HST3, ELBH, AIDA and PET were excluded according to SignalP. The highest aliphatic index belonged to OMPC, TORT and THIB and PPA. Also, the highest GRAVY belonged to OMPC, ELAP, TORT, BLAT, THIB, and PSPE. Furthermore, G-CSF fused with all SPs were predicted as soluble fusion proteins except three SPs. Finally, we found OMPT, OMPF, PHOE, LAMB, SAT, and OMPP can translocate G-CSF into extracellular space. Conclusion: Six SPs were suitable for translocating G-CSF into the extracellular media. Although growing data indicate that the bioinformatics approaches can improve the precision and accuracy of studies, further experimental investigations and recent patents explaining several inventions associated to the clinical aspects of SPs for secretory production of recombinant GCSF in E. coli are required for final validation.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 784
Author(s):  
Sandra Minic ◽  
Marion Florimond ◽  
Jérémy Sadoine ◽  
Anne Valot-Salengro ◽  
Catherine Chaussain ◽  
...  

Dental pulp is a dynamic tissue able to heal after injury under moderate inflammatory conditions. Our study aimed to evaluate pulp repair under inflammatory conditions in rats. For this purpose, we developed a rat model of controlled pulpitis followed by pulpotomy with a tricalcium silicate-based cement. Fifty-four cavities were prepared on the occlusal face of the maxillary upper first molar of 27 eight-week-old male rats. E. coli lipopolysaccharides at 10 mg/mL or phosphate-buffered saline PBS was injected after pulp injury. Non-inflamed molars were used as controls. Levels of inflammation-related molecules were measured 6 and 24 h after induction by enzyme-linked immunosorbent assay of coronal pulp samples. Pulp capping and coronal obturation after pulpotomy were performed with tricalcium silicate-based cement. Four and fifteen days after pulpotomy, histological and immunohistochemical analysis was performed to assess pulp inflammation and repair processes. Our results showed significantly higher levels of innate inflammatory proteins (IL-1β, IL-6, TNF-α and CXCL-1) compared with those in controls. Moderate residual inflammation near the capping material was demonstrated by histology and immunohistochemistry, with the presence of few CD68-positive cells. We showed that, in this model of controlled pulpitis, pulpotomy with BiodentineTM allowed the synthesis at the injury site of a mineralized bridge formed from mineralized tissue secreted by cells displaying odontoblastic characteristics. Analysis of these data suggests overall that, with the limitations inherent to findings in animal models, pulpotomy with a silicate-based cement is a good treatment for controlling inflammation and enhancing repair in cases of controlled pulpitis.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3040
Author(s):  
Alexandra Ciorîță ◽  
Cezara Zăgrean-Tuza ◽  
Augustin C. Moț ◽  
Rahela Carpa ◽  
Marcel Pârvu

The phytochemical analysis of Vinca minor, V. herbacea, V. major, and V. major var. variegata leaf extracts showed species-dependent antioxidant, antibacterial, and cytotoxic effects correlated with the identified phytoconstituents. Vincamine was present in V. minor, V. major, and V. major var. variegata, while V. minor had the richest alkaloid content, followed by V. herbacea. V. major var. variegata was richest in flavonoids and the highest total phenolic content was found in V. herbacea which also had elevated levels of rutin. Consequently, V. herbacea had the highest antioxidant activity followed by V. major var. variegata. Whereas, the lowest one was of V. major. The V. minor extract showed the most efficient inhibitory effect against both Staphylococcus aureus and E. coli. On the other hand, V. herbacea had a good anti-bacterial potential only against S. aureus, which was most affected at morphological levels, as indicated by scanning electron microscopy. The Vinca extracts acted in a dose-depended manner against HaCaT keratinocytes and A375 melanoma cells and moreover, with effects on the ultrastructure, nitric oxide concentration, and lactate dehydrogenase release. Therefore, the Vinca species could be exploited further for the development of alternative treatments in bacterial infections or as anticancer adjuvants.


2021 ◽  
Vol 22 (3) ◽  
pp. 1103
Author(s):  
Marco Cippitelli ◽  
Helena Stabile ◽  
Andrea Kosta ◽  
Sara Petillo ◽  
Angela Gismondi ◽  
...  

The Ikaros zing-finger family transcription factors (IKZF TFs) are important regulators of lymphocyte development and differentiation and are also highly expressed in B cell malignancies, including Multiple Myeloma (MM), where they are required for cancer cell growth and survival. Moreover, IKZF TFs negatively control the functional properties of many immune cells. Thus, the targeting of these proteins has relevant therapeutic implications in cancer. Indeed, accumulating evidence demonstrated that downregulation of Ikaros and Aiolos, two members of the IKZF family, in malignant plasma cells as well as in adaptative and innate lymphocytes, is key for the anti-myeloma activity of Immunomodulatory drugs (IMiDs). This review is focused on IKZF TF-related pathways in MM. In particular, we will address how the depletion of IKZF TFs exerts cytotoxic effects on MM cells, by reducing their survival and proliferation, and concomitantly potentiates the antitumor immune response, thus contributing to therapeutic efficacy of IMiDs, a cornerstone in the treatment of this neoplasia.


2015 ◽  
Vol 60 (9) ◽  
pp. 1273-1282 ◽  
Author(s):  
Yasunori Yamashita ◽  
Takashi Ukai ◽  
Hirotaka Nakamura ◽  
Yasunori Yoshinaga ◽  
Hiroki Kobayashi ◽  
...  

2005 ◽  
Vol 37 (4) ◽  
pp. 265-269 ◽  
Author(s):  
Xi-Qiang Zhu ◽  
Su-Xia Li ◽  
Hua-Jun He ◽  
Qin-Sheng Yuan

Abstract The EC-SOD cDNA was cloned by polymerase chain reaction (PCR) and inserted into the Escherichia coli expression plasmid pET-28a(+) and transformed into E. coli BL21(DE3). The corresponding protein that was overexpressed as a recombinant His6-tagged EC-SOD was present in the form of inactive inclusion bodies. This structure was first solubilized under denaturant conditions (8.0 M urea). Then, after a capture step using immobilized metal affinity chromatography (IMAC), a gradual refolding of the protein was performed on-column using a linear urea gradient from 8.0 M to 1.5 M in the presence of glutathione (GSH) and oxidized glutathione (GSSG). The mass ratio of GSH to GSSG was 4:1. The purified enzyme was active, showing that at least part of the protein was properly refolded. The protein was made concentrated by ultrafiltration, and then isolated using Sephacryl S-200 HR. There were two protein peaks in the A280 profile. Based on the results of electrophoresis, we concluded that the two fractions were formed by protein subunits of the same mass, and in the fraction where the molecular weight was higher, the dimer was formed through the disulfide bond between subunits. Activities were detected in the two fractions, but the activity of the dimer was much higher than that of the single monomer. The special activities of the two fractions were found to be 3475 U/mg protein and 510 U/mg protein, respectively.


2006 ◽  
Vol 50 (7) ◽  
pp. 2478-2486 ◽  
Author(s):  
Andrea Giacometti ◽  
Oscar Cirioni ◽  
Roberto Ghiselli ◽  
Federico Mocchegiani ◽  
Fiorenza Orlando ◽  
...  

ABSTRACT Sepsis remains a major cause of morbidity and mortality in hospitalized patients, despite intense efforts to improve survival. The primary lead for septic shock results from activation of host effector cells by endotoxin, the lipopolysaccharide (LPS) associated with cell membranes of gram-negative bacteria. For these reasons, the quest for compounds with antiendotoxin properties is actively pursued. We investigated the efficacy of the amphibian skin antimicrobial peptide temporin L in binding Escherichia coli LPS in vitro and counteracting its effects in vivo. Temporin L strongly bound to purified E. coli LPS and lipid A in vitro, as proven by fluorescent displacement assay, and readily penetrated into E. coli LPS monolayers. Furthermore, the killing activity of temporin L against E. coli was progressively inhibited by increasing concentrations of LPS added to the medium, further confirming the peptide's affinity for endotoxin. Antimicrobial assays showed that temporin L interacted synergistically with the clinically used β-lactam antibiotics piperacillin and imipenem. Therefore, we characterized the activity of temporin L when combined with imipenem and piperacillin in the prevention of lethality in two rat models of septic shock, measuring bacterial growth in blood and intra-abdominal fluid, endotoxin and tumor necrosis factor alpha (TNF-α) concentrations in plasma, and lethality. With respect to controls and single-drug treatments, the simultaneous administration of temporin L and β-lactams produced the highest antimicrobial activities and the strongest reduction in plasma endotoxin and TNF-α levels, resulting in the highest survival rates.


Blood ◽  
2011 ◽  
Vol 118 (22) ◽  
pp. 5813-5823 ◽  
Author(s):  
Solenne Vigne ◽  
Gaby Palmer ◽  
Céline Lamacchia ◽  
Praxedis Martin ◽  
Dominique Talabot-Ayer ◽  
...  

Abstract IL-36α (IL-1F6), IL-36β (IL-1F8), and IL-36γ (IL-1F9) are members of the IL-1 family of cytokines. These cytokines bind to IL-36R (IL-1Rrp2) and IL-1RAcP, activating similar intracellular signals as IL-1, whereas IL-36Ra (IL-1F5) acts as an IL-36R antagonist (IL-36Ra). In this study, we show that both murine bone marrow-derived dendritic cells (BMDCs) and CD4+ T lymphocytes constitutively express IL-36R and respond to IL-36α, IL-36β, and IL-36γ. IL-36 induced the production of proinflammatory cytokines, including IL-12, IL-1β, IL-6, TNF-α, and IL-23 by BMDCs with a more potent stimulatory effect than that of other IL-1 cytokines. In addition, IL-36β enhanced the expression of CD80, CD86, and MHC class II by BMDCs. IL-36 also induced the production of IFN-γ, IL-4, and IL-17 by CD4+ T cells and cultured splenocytes. These stimulatory effects were antagonized by IL-36Ra when used in 100- to 1000-fold molar excess. The immunization of mice with IL-36β significantly and specifically promoted Th1 responses. Our data thus indicate a critical role of IL-36R ligands in the interface between innate and adaptive immunity, leading to the stimulation of T helper responses.


Sign in / Sign up

Export Citation Format

Share Document