scholarly journals Glucocorticoid Receptor Signaling in Diabetes

2021 ◽  
Vol 22 (20) ◽  
pp. 11173
Author(s):  
Ioanna Kokkinopoulou ◽  
Andriana Diakoumi ◽  
Paraskevi Moutsatsou

Stress and depression increase the risk of Type 2 Diabetes (T2D) development. Evidence demonstrates that the Glucocorticoid (GC) negative feedback is impaired (GC resistance) in T2D patients resulting in Hypothalamic-Pituitary-Adrenal (HPA) axis hyperactivity and hypercortisolism. High GCs, in turn, activate multiple aspects of glucose homeostasis in peripheral tissues leading to hyperglycemia. Elucidation of the underlying molecular mechanisms revealed that Glucocorticoid Receptor (GR) mediates the GC-induced dysregulation of glucose production, uptake and insulin signaling in GC-sensitive peripheral tissues, such as liver, skeletal muscle, adipose tissue, and pancreas. In contrast to increased GR peripheral sensitivity, an impaired GR signaling in Peripheral Blood Mononuclear Cells (PBMCs) of T2D patients, associated with hyperglycemia, hyperlipidemia, and increased inflammation, has been shown. Given that GR changes in immune cells parallel those in brain, the above data implicate that a reduced brain GR function may be the biological link among stress, HPA hyperactivity, hypercortisolism and hyperglycemia. GR polymorphisms have also been associated with metabolic disturbances in T2D while dysregulation of micro-RNAs—known to target GR mRNA—has been described. Collectively, GR has a crucial role in T2D, acting in a cell-type and context-specific manner, leading to either GC sensitivity or GC resistance. Selective modulation of GR signaling in T2D therapy warrants further investigation.

2019 ◽  
Vol 97 (6) ◽  
pp. 562-569 ◽  
Author(s):  
Anthony Cannavicci ◽  
Qiuwang Zhang ◽  
Si-Cheng Dai ◽  
Marie E. Faughnan ◽  
Michael J.B. Kutryk

Hereditary hemorrhagic telangiectasia (HHT) is a rare vascular disorder inherited in an autosomal dominant manner. Patients with HHT can develop vascular dysplasias called telangiectasias and arteriovenous malformations (AVMs). Our objective was to profile and characterize micro-RNAs (miRNAs), short noncoding RNAs that regulate gene expression posttranscriptionally, in HHT patient-derived peripheral blood mononuclear cells (PBMCs). PBMCs, comprised mostly of lymphocytes and monocytes, have been reported to be dysfunctional in HHT. A total of 40 clinically confirmed HHT patients and 22 controls were enrolled in this study. PBMCs were isolated from 16 mL of peripheral blood and purified for total RNA. MiRNA expression profiling was conducted with a human miRNA array analysis. Select dysregulated miRNAs and miRNA targets were validated with reverse transcription–quantitative polymerase chain reaction. Of the 377 miRNAs screened, 41 dysregulated miRNAs were identified. Both miR-28-5p and miR-361-3p, known to target insulin-like growth factor 1 (IGF1), a potent angiogenic growth factor, were found to be significantly downregulated in HHT patients. Consequently, IGF1 mRNA levels were found to be significantly elevated. Our research successfully identified miRNA dysregulation and elevated IGF1 mRNA levels in PBMCs from HHT patients. This novel discovery represents a potential pathogenic mechanism that could be targeted to alleviate clinical manifestations of HHT.


2021 ◽  
Author(s):  
Zhibin Li ◽  
chengcheng Sun ◽  
Fei Wang ◽  
Xiran Wang ◽  
Jiacheng Zhu ◽  
...  

Background: Immune cells play important roles in mediating immune response and host defense against invading pathogens. However, insights into the molecular mechanisms governing circulating immune cell diversity among multiple species are limited. Methods: In this study, we compared the single-cell transcriptomes of 77 957 immune cells from 12 species using single-cell RNA-sequencing (scRNA-seq). Distinct molecular profiles were characterized for different immune cell types, including T cells, B cells, natural killer cells, monocytes, and dendritic cells. Results: The results revealed the heterogeneity and compositions of circulating immune cells among 12 different species. Additionally, we explored the conserved and divergent cellular cross-talks and genetic regulatory networks among vertebrate immune cells. Notably, the ligand and receptor pair VIM-CD44 was highly conserved among the immune cells. Conclusions: This study is the first to provide a comprehensive analysis of the cross-species single-cell atlas for peripheral blood mononuclear cells (PBMCs). This research should advance our understanding of the cellular taxonomy and fundamental functions of PBMCs, with important implications in evolutionary biology, developmental biology, and immune system disorders


Author(s):  
Petrungaro A ◽  
◽  
Scudo F ◽  
Quartarone E ◽  
◽  
...  

The implant of autologous mononuclear cells is an avant-garde method based on the use of a cell population within our body to regenerate tissues that have been damaged by various pathological events. The biological assumption is the richness and complexity of biochemical and cellular phenomena inherent in both organism response to damage and tissue regeneration. The key role is played by the mononuclear phagocyte system which regulates and modulates the activity of mesenchymal stem cells capable of differentiating and providing tissue repair. This system does not only have a traditional “scavenger” function within the immune system, but it is also of central importance in the modulation and activation of the response to tissue damage, be it traumatic, surgical, or degenerative. In this review we summarize the main features of this method and the most common uses in clinical practice where the interest is growing considering both the powerful, rapid and documented regenerative response of the various “target” tissues: vascular, cartilage, bone, muscle and tendon tissue.


2020 ◽  
Author(s):  
Zerrin Karaaslan ◽  
Ozlem Timirci Kahraman ◽  
Elif Sanli ◽  
Hayriye Arzu Ergen ◽  
Basar Bilgic ◽  
...  

Abstract Background: Our aim was to identify the differentially expressed genes (DEGs) between Parkinson’s disease (PD) patients and controls by microarray technology and analysis of related molecular pathways by functional annotation. Methods: Thirty PD patients and 30 controls were enrolled. Agilent Human 8X60 K Oligo Microarray was used for gene level expression identification. Gene ontology and pathway enrichment analyses were used for functional annotation of DEGs. Protein-protein interaction analyses were performed with STRING. Expression levels of randomly selected 5 genes among DEGs were quantified by real time quantitative polymerase chain reaction (RT-PCR) for validation. Flow cytometry was done to determine frequency of regulatory T cells (Tregs) in peripheral blood mononuclear cells. Results: A total of 361 DEGs (143 upregulated and 218 downregulated) were identified after GeneSpring analysis. DEGs were involved in 28 biological processes, 12 cellular components and 26 molecular functions. Pathway analyses demonstrated that upregulated genes mainly enriched in p53 (CASP3, TSC2, ATR, MDM4, CCNG1) and PI3K/Akt (IL2RA, IL4R, TSC2, VEGFA, PKN2, PIK3CA, ITGA4, BCL2L11) signaling pathways. TP53 and PIK3CA were identified as most significant hub proteins. Expression profiles obtained by RT-PCR were consistent with microarray findings. PD patients showed increased proportions of CD49d+ Tregs, which correlated with disability scores. Discussion: Survival pathway genes were upregulated putatively to compensate neuronal degeneration. Bioinformatics analysis showed an association between survival and inflammation genes. Increased CD49d+ Treg ratios might signify the attempt of the immune system to suppress ongoing inflammation. Conclusion: Altered functions of Tregs might have an important role in PD pathogenesis and CD49d expression could be a prognostic biomarker of PD.


Animals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 545 ◽  
Author(s):  
Lena Reiske ◽  
Sonja Schmucker ◽  
Julia Steuber ◽  
Volker Stefanski

Stress hormones exert important modulating influences on the functionality of immune cells. Despite its major role as a livestock animal and its increasing use as an animal model, knowledge about this relationship in the domestic pig is rare. This study therefore aimed to characterize the effect of glucocorticoids and catecholamines on the proliferation and cytokine production of porcine peripheral blood mononuclear cells (PBMC). Blood was obtained from donor pigs equipped with indwelling catheters to exclude stress hormone exposition before in vitro testing. PBMC were stimulated in the presence of cortisol, adrenaline or noradrenaline at concentrations resembling low to high stress conditions. Proliferation was determined via 3H-thymidine incorporation, and TNFα producers were quantified by intracellular cytokine staining. Cortisol led to a decrease in mitogen-induced lymphocyte proliferation and the number of TNFα producing cells. In contrast, catecholamines increased proliferation while exerting repressive or no effects on the number of cytokine producers. Remarkably, in concentrations presumably found in lymphatic tissue in stress situations, noradrenaline suppressed lymphocyte proliferation completely. The shown repressive effects might especially have implications on health and welfare in pigs. The obtained results provide a preliminary database for extended studies on the molecular mechanisms of glucocorticoid and catecholamine actions on porcine immune cells.


2011 ◽  
Vol 14 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Janice Humphreys ◽  
Elissa S. Epel ◽  
Bruce A. Cooper ◽  
Jue Lin ◽  
Elizabeth H. Blackburn ◽  
...  

Recent studies suggest that chronic psychological stress may accelerate aging at the cellular level. Telomeres are protective components that stabilize the ends of chromosomes and modulate cellular aging. Women exposed to intimate partner violence (IPV) experience chronic stress and report worse health. The purpose of this exploratory study was to examine telomeric DNA length in women who have experienced chronic stress related to IPV. We hypothesized that IPV exposure would be associated with shorter telomere length. The investigation used a cross-sectional design to study telomere length in women with a history of IPV exposure and control women who reported no prior exposure to IPV. Advertisements and public notices were used to recruit a convenience sample of healthy women. Mean leukocyte telomere length was measured in DNA samples from peripheral blood mononuclear cells (PBMCs) by a quantitative polymerase chain reaction assay (qPCR). Telomere length was significantly shorter in the 61 formerly abused women compared to the 41 controls ( t = 2.4, p = .02). Length of time in the abusive relationship and having children were associated with telomere length after controlling for age and body mass index (BMI) ( F(2, 99) = 10.23, p < .001). Numerous studies suggest that women who experience IPV have poorer overall health. It is often presumed that the stress of IPV may be causing greater morbidity. Findings from this descriptive study suggest a link between IPV exposure, duration of IPV-related stress, and telomere length molecular mechanisms that regulate cellular aging.


Sign in / Sign up

Export Citation Format

Share Document