scholarly journals Fecal Calprotectin Is Increased in Stroke

2021 ◽  
Vol 11 (1) ◽  
pp. 159
Author(s):  
Shin Young Park ◽  
Sang Pyung Lee ◽  
Woo Jin Kim

Background: While there have been major advances in unveiling the mechanisms comprising the ischemic cascade of CNS, stroke continues to be a significant burden. There is a need to extend the focus toward peripheral changes, and the brain–gut axis has recently gained much attention. Our study aimed to evaluate gut inflammation and its association with blood variables in stroke using fecal calprotectin (FC). Methods: Fecal samples were obtained from 27 stroke patients and 27 control subjects. FC was quantitatively measured using a commercial ELISA. Laboratory data on the fecal sample collection were also collected, including CBC, ESR, glucose, creatinine, total protein, albumin, transaminases, and CRP. Results: There was a significant increase in FC levels in stroke patients compared to the controls. Furthermore, FC in stroke patients was negatively correlated with the Glasgow Coma Scale. Moreover, FC in stroke patients was positively correlated with CRP and negatively correlated with lymphocyte count and albumin. Conclusions: Our findings show that increased FC is associated with consciousness and systemic response in stroke and warrants further studies to elucidate the usefulness of FC in the management of stroke.

2021 ◽  
Vol 11 (7) ◽  
pp. 2987
Author(s):  
Takumi Okumura ◽  
Yuichi Kurita

Image therapy, which creates illusions with a mirror and a head mount display, assists movement relearning in stroke patients. Mirror therapy presents the movement of the unaffected limb in a mirror, creating the illusion of movement of the affected limb. As the visual information of images cannot create a fully immersive experience, we propose a cross-modal strategy that supplements the image with sensual information. By interacting with the stimuli received from multiple sensory organs, the brain complements missing senses, and the patient experiences a different sense of motion. Our system generates the sense of stair-climbing in a subject walking on a level floor. The force sensation is presented by a pneumatic gel muscle (PGM). Based on motion analysis in a human lower-limb model and the characteristics of the force exerted by the PGM, we set the appropriate air pressure of the PGM. The effectiveness of the proposed system was evaluated by surface electromyography and a questionnaire. The experimental results showed that by synchronizing the force sensation with visual information, we could match the motor and perceived sensations at the muscle-activity level, enhancing the sense of stair-climbing. The experimental results showed that the visual condition significantly improved the illusion intensity during stair-climbing.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 134
Author(s):  
Stephanie Dooves ◽  
Arianne J. H. van Velthoven ◽  
Linda G. Suciati ◽  
Vivi M. Heine

Tuberous sclerosis complex (TSC) is a genetic disease affecting the brain. Neurological symptoms like epilepsy and neurodevelopmental issues cause a significant burden on patients. Both neurons and glial cells are affected by TSC mutations. Previous studies have shown changes in the excitation/inhibition balance (E/I balance) in TSC. Astrocytes are known to be important for neuronal development, and astrocytic dysfunction can cause changes in the E/I balance. We hypothesized that astrocytes affect the synaptic balance in TSC. TSC patient-derived stem cells were differentiated into astrocytes, which showed increased proliferation compared to control astrocytes. RNA sequencing revealed changes in gene expression, which were related to epidermal growth factor (EGF) signaling and enriched for genes that coded for secreted or transmembrane proteins. Control neurons were cultured in astrocyte-conditioned medium (ACM) of TSC and control astrocytes. After culture in TSC ACM, neurons showed an altered synaptic balance, with an increase in the percentage of VGAT+ synapses. These findings were confirmed in organoids, presenting a spontaneous 3D organization of neurons and glial cells. To conclude, this study shows that TSC astrocytes are affected and secrete factors that alter the synaptic balance. As an altered E/I balance may underlie many of the neurological TSC symptoms, astrocytes may provide new therapeutic targets.


2019 ◽  
Vol 8 (9) ◽  
pp. 1320
Author(s):  
Kazumasa Oda ◽  
Hideshi Okada ◽  
Akio Suzuki ◽  
Hiroyuki Tomita ◽  
Ryo Kobayashi ◽  
...  

Endothelial disorders are related to various diseases. An initial endothelial injury is characterized by endothelial glycocalyx injury. We aimed to evaluate endothelial glycocalyx injury by measuring serum syndecan-1 concentrations in patients during comprehensive medical examinations. A single-center, prospective, observational study was conducted at Asahi University Hospital. The participants enrolled in this study were 1313 patients who underwent comprehensive medical examinations at Asahi University Hospital from January 2018 to June 2018. One patient undergoing hemodialysis was excluded from the study. At enrollment, blood samples were obtained, and study personnel collected demographic and clinical data. No treatments or exposures were conducted except for standard medical examinations and blood sample collection. Laboratory data were obtained by the collection of blood samples at the time of study enrolment. According to nonlinear regression, the concentrations of serum syndecan-1 were significantly related to age (p = 0.016), aspartic aminotransferase concentration (AST, p = 0.020), blood urea nitrogen concentration (BUN, p = 0.013), triglyceride concentration (p < 0.001), and hematocrit (p = 0.006). These relationships were independent associations. Endothelial glycocalyx injury, which is reflected by serum syndecan-1 concentrations, is related to age, hematocrit, AST concentration, BUN concentration, and triglyceride concentration.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Duanlu Hou ◽  
Chunjie Wang ◽  
Xiaofei Ye ◽  
Ping Zhong ◽  
Danhong Wu

Abstract Background Persistent inflammation is an important driver of disease progression and affects prognosis. Some indicators of inflammation predict short-term outcomes. The relationship between prognosis, especially mortality, and persistent inflammation in massive stroke has not been studied, and this has been the subject of our research. Methods From April 1, 2017 to February 1, 2020, consecutive patients were prospectively enrolled. Clinical data, laboratory data, imaging data and follow-up infections morbidity were compared between 2 groups according to modified Rankin scale (mRS) scores (mRS < 3 and ≥ 3) at 1 month. The binomial logistic analysis was used to determine independent factors of 1-month prognosis. Short-term functional outcome, mortality and infection rates in massive stroke with and without persistent inflammation were compared. Results One hundred thirty-nine patients with massive stroke were included from 800 patients. We found that admission blood glucose levels (p = 0.005), proportions of cerebral hemispheric (p = 0.001), posterior circulatory (p = 0.035), and lacunar (p = 0.022) ischemia were higher in poor outcome patients; neutrophil-to-lymphocyte ratio (odd ratio = 1.87, 95%CI 1.14–3.07, p = 0.013) and blood glucose concentrations (odd ratio = 1.34, 95%CI 1.01–1.79, p = 0.043) can independently predict the short-term prognosis in massive stroke patients. We also found that the incidence of pulmonary infection (p = 0.009), one-month mortality (p = 0.003) and adverse outcomes (p = 0.0005) were higher in patients with persistent inflammation. Conclusions This study suggested that persistent inflammation is associated with poor prognosis, 1-month mortality and the occurrence of in-hospital pulmonary infection and that higher baseline inflammation level predicts short-term poor outcomes in massive stroke.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Hetal Mistry ◽  
Madeline Levy ◽  
Meaghan Roy-O'Reilly ◽  
Louise McCullough

Background and Purpose: Orosomucoid-1 (ORM-1) is an abundant protein with important roles in inflammation and immunosuppression. We utilized RNA sequencing to measure mRNA levels in human ischemic stroke patients, with confirmation by serum ORM-1 protein measurements. A mouse model of ischemic stroke was then used to examine post-stroke changes in ORM-1 within the brain itself. Hypothesis: We tested the hypothesis that ORM-1 levels increase following ischemic stroke, with sex differences in protein dynamics over time. Methods: RNA sequencing was performed on whole blood from ischemic stroke patients (n=23) and controls (n=12), with Benjamini-Hochberg correction for multiple testing. Enzyme-linked immunosorbent assay was performed on serum from ischemic stroke patients (n=28) and controls (n=8), with analysis by T-test. For brain analysis, mice (n=14) were subjected to a 90-minute middle cerebral artery occlusion (MCAO) surgery and sacrificed 6 or 24 hours after stroke. Control mice underwent parallel “sham” surgery without occlusion. Western blotting was used to detect ORM-1 protein levels in whole brain, with analysis by two-way ANOVA. Results: RNA sequencing showed a 2.8-fold increase in human ORM-1 at 24 hours post-stroke (q=.0029), an increase also seen in serum ORM-1 protein levels (p=.011). Western blot analysis of mouse brain revealed that glycosylated (p=0.0003) and naive (p=0.0333) forms of ORM-1 were higher in female mice compared to males 6 hours post-stroke. Interestingly, ORM-1 levels were higher in the brains of stroke mice at 6 hours (p=.0483), while at 24 hours ORM-1 levels in stroke mice were lower than their sham counterparts (p=.0212). In both human and mouse data, no sex differences were seen in ORM-1 levels in the brain or periphery at 24 hours post-stroke. Conclusion: In conclusion, ORM-1 is a sexually dimorphic protein involved in the early (<24 hour) response to ischemic stroke. This research serves as an initial step in determining the mechanism of ORM-1 in the ischemic stroke response and its potential as a future therapeutic target for both sexes.


2021 ◽  
Vol 17 (7) ◽  
pp. 1371-1379
Author(s):  
Di Liu ◽  
Ying Li ◽  
Jiechen Liu ◽  
Zhiyuan Shen ◽  
Fengying Wang ◽  
...  

Occlusal trauma (OT), by causing periodontal tissue damage, can activate and enhance the activity of the peripheral and central nervous system (CNS) neuropeptides. The brain-derived neurotrophic factor (BDNF) gene is activity-dependent and exhibits marked alterations, characterized by protection against injury and repair. Our results show the possible molecular mechanism through which noxious environmental stimuli induce alterations in BDNF activity in the local periodontal tissue, the primary sensory neurons-Vc, and the hippocampus, suggesting systemic impairment. BDNF serves a more positive and enduring trauma protection and repair function in Vc compared to that in local dental tissue.


2020 ◽  
Vol 7 (7) ◽  
pp. 1078
Author(s):  
Tamminana Venugopala Rao ◽  
Budumuru Annaji Rao ◽  
Sreedevi Panchadi ◽  
K. Sudheer

Background: The incidence of cerebrovascular disease increases with age and the number of strokes is projected to increase as the elderly population grows. A stroke occurs when blood vessels that carry blood to the brain suddenly blocked or burst, preventing blood flow to the brain. The most common cause of blood vessel blockages is thrombosis (a blood clot) or an embolism (floating clot). Blood clots may form in the arteries that are damaged by atherosclerosis. Atherosclerosis is an aging process but some factors (risk factor) precipitate it to occur earlier. To find out the risk factors properly are of tremendous importance as risk factor change could directly influence or indirectly affect case fatality by altering the natural history of the disease. Serum lipids are thought to interact with the pathogenesis of stroke through the atherosclerotic mechanism. Objective was to identify the high serum lipid as an independent risk factor of stroke.Methods: This is a hospital-based case-control study. Seventy cases of stroke patients and age, sex-matched 70 healthy control subjects were enrolled by non-random sampling. 12 hours of fasting plasma lipids were estimated in both cases and control subjects. Then it was compared between cases and controls.Results: Hypercholesterolemia was higher in the case group than control but not statistically significant. Mean LDL- cholesterol, and triglycerides were significantly higher in the case group than the control group. The mean value of serum HDL-cholesterol was not significantly lower in the case group than the control group.Conclusions: Serum lipids are significantly higher in ischaemic stroke patients than the control group (LDL cholesterol and triglyceride). So, it may be an independent risk factor of ischemic stroke.


1995 ◽  
Vol 37 (4) ◽  
pp. 305-315 ◽  
Author(s):  
S. E. Shideler ◽  
C. J. Munro ◽  
H. K. Johl ◽  
H. W. Taylor ◽  
B. L. Lasley

Sign in / Sign up

Export Citation Format

Share Document