scholarly journals Characterization of Agricultural and Food Processing Residues for Potential Rubber Filler Applications

2019 ◽  
Vol 3 (4) ◽  
pp. 102
Author(s):  
Cindy S. Barrera ◽  
Katrina Cornish

Large volumes of agricultural and food processing residues are generated daily around the world. Despite the various potential uses reported for this biomass, most are still treated as waste that requires disposal and negatively impacts the environmental footprint of the primary production process. Increasing attention has been paid toward the use of these residues as alternative fillers for rubber and other large-scale commodity polymers to reduce dependence on petroleum. Nevertheless, characterization of these alternative fillers is required to define compatibility with the specific polymer, identify filler limitations, understand the properties of the resulting composites, and modify the materials to enable the engineering of composites to exploit all the potential advantages of these residue-derived fillers.

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 835 ◽  
Author(s):  
Juan Fernando Villacrés ◽  
Fernando Auat Cheein

Chile is one of the main exporters of sweet cherries in the world and one of the few in the southern hemisphere, being their harvesting between October and January. Hence, Chilean cherries have gained market in the last few years and positioned Chile in a strategic situation which motivates to undergo through a deep innovation process in the field. Currently, cherry crop estimates have an error of approximately 45%, which propagates to all stages of the production process. In order to mitigate such error, we develop, test and evaluate a deep neural-based approach, using a portable artificial vision system to enhance the cherries harvesting estimates. Our system was tested in a cherry grove, under real field conditions. It was able to detect cherries with up to 85% of accuracy and to estimate production with up to 25% of error. In addition, it was able to classify cherries into four sizes, for a better characterization of the production for exportation.


Genome ◽  
2020 ◽  
Vol 63 (3) ◽  
pp. 189-194
Author(s):  
François Belzile ◽  
Amina Abed ◽  
Davoud Torkamaneh

For all major crops, sizeable genebanks are maintained across the world and serve as repositories of genetic diversity and key sources of novel traits used in breeding. Although molecular markers have been used to characterize diversity in a broad sense, the most common approach to exploring these resources has been through phenotypic characterization of subsets of these large collections. With the advent of affordable large-scale genotyping technologies and the increasing body of candidate genes for traits of interest, we argue here that it is time for a paradigm shift in the way that we explore and exploit these considerable and highly useful resources. By combining dense genotypic information in and around candidate genes, it is possible to classify accessions based on their haplotype, something approximating the actual alleles at these genes of interest.


2021 ◽  
Author(s):  
Marie Simonin ◽  
Martial Briand ◽  
Guillaume Chesneau ◽  
Aude Rochefort ◽  
Coralie Marais ◽  
...  

Seed microbiota constitutes a primary inoculum for plants that is gaining attention due to its role for plant health and productivity. Here, we performed a meta-analysis on 63 seed microbiota studies covering 50 plant species to synthesize knowledge on the diversity of this habitat. Seed microbiota are diverse and extremely variable, with taxa richness varying from one to thousands of taxa. Hence, seed microbiota presents a variable (i.e flexible) microbial fraction but we also identified a stable (i.e. core) fraction across samples. Around 30 bacterial and fungal taxa are present in most plant species and in samples from all over the world. Core taxa, such as Pantoea agglomerans, Pseudomonas viridiflava, P. fluorescens, Cladosporium perangustum and Alternaria sp., are dominant seed taxa. The characterization of the core and flexible seed microbiota provided here will help uncover seed microbiota roles for plant health and design effective microbiome engineering.


Author(s):  
Anna ZIELIŃSKA-CHMIELEWSKA

The article focuses on specific aspects of greening of production processes in food processing sector in Poland. It discusses relevant methods and techniques for managing the eco-friendly production process in the examined food processing enterprises in Poland, and compares the situation in the world. The purpose of the paper was also to present the results of the questionnaire on greening of producing process in food processing entities. The results of the questionnaire are preceded by a detailed analysis of different approaches to greening of production, along with an assessment of its future development according to the requirements of EU directives for food processing enterprises in Poland. The results showed that after Poland's accession to the European Union the majority of food processing enterprises implemented and intensified their efforts on water conservation, waste disposal, and reduction of energy consumption between 2010 and 2017. However, in practice, there was no considerable reduction of pollutants due to the setting of insufficient level of emission targets.


Author(s):  
Meriem Laamarti ◽  
Tarek Alouane ◽  
Souad Kartti ◽  
M.W. Chemao-Elfihri ◽  
Mohammed Hakmi ◽  
...  

AbstractIn late December 2019, an emerging viral infection COVID-19 was identified in Wuhan, China, and became a global pandemic. Characterization of the genetic variants of SARS-CoV-2 is crucial in following and evaluating it spread across countries. In this study, we collected and analyzed 3,067 SARS-CoV-2 genomes isolated from 55 countries during the first three months after the onset of this virus. Using comparative genomics analysis, we traced the profiles of the whole-genome mutations and compared the frequency of each mutation in the studied population. The accumulation of mutations during the epidemic period with their geographic locations was also monitored. The results showed 782 variant sites, of which 512 (65.47%) had a non-synonymous effect. Frequencies of mutated alleles revealed the presence of 38 recurrent non-synonymous mutations, including ten hotspot mutations with a prevalence higher than 0.10 in this population and distributed in six SARS-CoV-2 genes. The distribution of these recurrent mutations on the world map revealed certain genotypes specific to the geographic location. We also found co-occurring mutations resulting in the presence of several haplotypes. Moreover, evolution over time has shown a mechanism of mutation co-accumulation which might affect the severity and spread of the SARS-CoV-2.On the other hand, analysis of the selective pressure revealed the presence of negatively selected residues that could be taken into considerations as therapeutic targetsWe have also created an inclusive unified database (http://genoma.ma/covid-19/) that lists all of the genetic variants of the SARS-CoV-2 genomes found in this study with phylogeographic analysis around the world.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


2020 ◽  
Vol 10 (2) ◽  
pp. 103-106
Author(s):  
ASTEMIR ZHURTOV ◽  

Cruel and inhumane acts that harm human life and health, as well as humiliate the dignity, are prohibited in most countries of the world, and Russia is no exception in this issue. The article presents an analysis of the institution of responsibility for torture in the Russian Federation. The author comes to the conclusion that the current criminal law of Russia superficially and fragmentally regulates liability for torture, in connection with which the author formulated the proposals to define such act as an independent crime. In the frame of modern globalization, the world community pays special attention to the protection of human rights, in connection with which large-scale international standards have been created a long time ago. The Universal Declaration of Human Rights and other international acts enshrine prohibitions of cruel and inhumane acts that harm human life and health, as well as degrade the dignity.Considering the historical experience of the past, these standards focus on the prohibition of any kind of torture, regardless of the purpose of their implementation.


2019 ◽  
Author(s):  
Chem Int

The objective of this work is to study the ageing state of a used reverse osmosis (RO) membrane taken in Algeria from the Benisaf Water Company seawater desalination unit. The study consists of an autopsy procedure used to perform a chain of analyses on a membrane sheet. Wear of the membrane is characterized by a degradation of its performance due to a significant increase in hydraulic permeability (25%) and pressure drop as well as a decrease in salt retention (10% to 30%). In most cases the effects of ageing are little or poorly known at the local level and global measurements such as (flux, transmembrane pressure, permeate flow, retention rate, etc.) do not allow characterization. Therefore, a used RO (reverse osmosis) membrane was selected at the site to perform the membrane autopsy tests. These tests make it possible to analyze and identify the cause as well as to understand the links between performance degradation observed at the macroscopic scale and at the scale at which ageing takes place. External and internal visual observations allow seeing the state of degradation. Microscopic analysis of the used membranes surface shows the importance of fouling. In addition, quantification and identification analyses determine a high fouling rate in the used membrane whose foulants is of inorganic and organic nature. Moreover, the analyses proved the presence of a biofilm composed of protein.


Author(s):  
H.W. Ho ◽  
J.C.H. Phang ◽  
A. Altes ◽  
L.J. Balk

Abstract In this paper, scanning thermal conductivity microscopy is used to characterize interconnect defects due to electromigration. Similar features are observed both in the temperature and thermal conductivity micrographs. The key advantage of the thermal conductivity mode is that specimen bias is not required. This is an important advantage for the characterization of defects in large scale integrated circuits. The thermal conductivity micrographs of extrusion, exposed and subsurface voids are presented and compared with the corresponding topography and temperature micrographs.


Sign in / Sign up

Export Citation Format

Share Document