scholarly journals Effect of Horizontal Multidirectional Cyclic Loading on Piles in Sand: A Numerical Analysis

2021 ◽  
Vol 9 (2) ◽  
pp. 235
Author(s):  
Orianne Jenck ◽  
Armita Obaei ◽  
Fabrice Emeriault ◽  
Christophe Dano

Foundations of offshore and nearshore wind energy production systems are subjected to multidirectional and cyclic loads, due to the combined action of wind and waves and in the particular case of mutualized anchor foundations for floating wind turbines, to the phase shift between the loads generated in the adjacent anchored turbines. This article presents a three-dimensional numerical model developed with FLAC3D to analyse the impact of the change in direction of the horizontal load during the cycles. The typical case of a 1.7 m diameter and 10 m-long pile founded in a dense homogeneous sand is considered. A specific procedure has been implemented to apply force-controlled cycles with a change in lateral load direction. The results are compared to mono-directional lateral cyclic loads with the same average and cyclic forces. The results of the parametric study highlight the effect of the average value and amplitude of the cyclic loading on the accumulation of pile head horizontal displacements during the cycles. When a multidirectional cyclic loading is applied, it also leads to an accumulation of the deviated horizontal displacements, and the resulting accumulated horizontal displacements are larger than for a mono-directional cyclic loading of the same amplitude.

2021 ◽  
Author(s):  
Junnan Song ◽  
Martin Achmus

Abstract. The bearing behaviour of large-diameter monopile foundations for offshore wind turbines under lateral cyclic loads in cohesionless soil is an issue of ongoing research. In practice, mostly the p-y approach is applied in the design of monopiles. Recently, modifications of the original p-y approach for monotonic loading stated in the API regulations (API 2014) have been proposed to account for the special bearing behaviour of large-diameter piles with small length-to-diameter ratios (e.g. Thieken et al. 2015, Byrne et al. 2015). However, cyclic loading for horizontally loaded piles predominates the serviceability of the offshore wind converters, and the actual number of load cycles cannot be considered by the cyclic p-y approach of the API regulations. This research is therefore focusing on the effects of cyclic loading on the p-y curves along the pile shaft and aiming to develop a cyclic overlay model to determine the cyclic p-y curves valid for a lateral load with a given number of load cycles. The “Stiffness Degradation Method (SDM)” (Achmus et al. 2009) is applied in a three-dimensional finite element model to determine the effect of the cyclic loading by degrading the secant soil stiffness according to the magnitude of cyclic loading and number of load cycles based on the results of cyclic triaxial tests. Thereby, the numerical simulation results are used to develop a “cyclic overlay model”, i.e. an analytical approach to adapt the monotonic (or static) p-y curve to the number of load cycles. The new model is applied to a reference system and compared to the API approach for cyclic loads.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1246 ◽  
Author(s):  
Sien Liu ◽  
Qinghua Ye ◽  
Shiqiang Wu ◽  
Marcel J. F. Stive

As the third largest fresh water lake in China, Taihu Lake is suffering from serious eutrophication, where nutrient loading from tributary and surrounding river networks is one of the main contributors. In this study, water age is used to investigate the impacts of tributary discharge and wind influence on nutrient status in Taihu Lake, quantitatively. On the base of sub-basins of upstream catchments and boundary conditions of the lake, multiple inflow tributaries are categorized into three groups. For each group, the water age has been computed accordingly. A well-calibrated and validated three-dimensional Delft3D model is used to investigate both spatial and temporal heterogeneity of water age. Changes in wind direction lead to changes in both the average value and spatial pattern of water age, while the impact of wind speed differs in each tributary group. Water age decreases with higher inflow discharge from tributaries; however, discharge effects are less significant than that of wind. Wind speed decline, such as that induced by climate change, has negative effects on both internal and external nutrient source release, and results in water quality deterioration. Water age is proved to be an effective indicator of water exchange efficiency, which may help decision-makers to carry out integrated water management at a complex basin scale.


Author(s):  
Omid Kohan ◽  
Mark J. Cassidy ◽  
Christophe Gaudin ◽  
Britta Bienen

Self-elevating mobile jack-up units have been employed in offshore exploration and development in shallow waters at depths of up to approximately 150 m. Jack-ups are designed to move to a new site after operations are completed. The spudcan footings, which can be embedded up to three diameters deep in soft soil, must therefore be extracted by jacking down the hull into the water and then floating it beyond the neutral draft. This provides the maximum pull-out force to overcome the soil resistance to the jack-ups, but this force may not be sufficient. Problematic cases of this offshore are reported to take up to 10 weeks to extract, a costly exercise for the industry. A method sometimes used offshore is to cycle the spudcans vertically in an attempt to free them. This can be achieved by pushing and pulling the leg by leaving the hull afloat in the water and allowing the impact of small amplitude waves on the hull to generate cyclic loads on the spudcan. This paper reports a series of centrifuge tests investigating the ability to extract a spudcan under regular and irregular cyclic loading. Spudcan extraction tests were performed from a depth of three spudcan diameters in normally consolidated clay in a geotechnical beam centrifuge. The results demonstrate that successful extraction is dependent on the combination of mean pull-out load and the amplitude of the cycling. It is also shown that insufficient tensile static loads and prolonged small cyclic loads result in the dissipation of the negative excess pore pressure at the spudcan invert caused by the buoyancy of the hull in excess of neutral draft. It results in consolidation of soil and changes in the shear strength of the soil and consequently either extraction of the spudcan after a long period of time or unsuccessful leg extraction.


2005 ◽  
Vol 128 (3) ◽  
pp. 437-442 ◽  
Author(s):  
Conrad Kay Smith ◽  
M. L. Hull ◽  
S. M. Howell

Although single-loop tibialis tendon allografts have increased in popularity owing to their many advantages over patellar tendon and double-loop hamstring tendon autografts, some percentage of the patient population do not have clinically stable knees following anterior cruciate ligament reconstruction with single-loop tibialis tendon allografts. Therefore, it would be advantageous to determine the causes of increased anterior laxity which ultimately must be traced to lengthening of the graft construct. One objective of this study was to demonstrate the feasibility of using Roentgen stereophotogrammetric analysis (RSA) to determine the causes of lengthening of a single-loop graft construct subjected to cyclic loading. A second objective was to determine which cause(s) contributes most to an increase in length of this graft construct. Radio-opaque markers were inserted into ten grafts to measure the lengthening at the sites of the tibial and femoral fixations and between the sites of fixation. Each graft was passed through a tibial tunnel in a calf tibia, looped around a rigid cross-pin, and fixed to the tibia with a Washerloc fixation device. The grafts were cyclically loaded for 225,000 cycles from 20to170N. Prior to and at intervals during the cyclic loading, simultaneous radiographs were taken. RSA was used to determine the three-dimensional coordinates of the markers from which the lengthening at the sites of fixation and between the sites of fixation was computed at each interval. The sites of the femoral and tibial fixations were the largest contributors to the increase in length of the graft construct, with maximum average values of 0.68 and 0.55 mm, respectively, after 225,000 cycles. The graft substance between the sites of fixation contributed least to lengthening of the graft, with a maximum average value of 0.31 mm. Ninety percent of the maximum average values occurred before 100,000 cycles of loading for the largest contributors. RSA proved to be a useful method for measuring lengthening due to all three causes. Lengthening of the graft construct at the sites of both fixations is sufficiently large that the combined contributions may manifest as a clinically important increase in anterior laxity.


Author(s):  
Yu. A. Ezrokhi ◽  
E. A. Khoreva

The paper considers techniques to develop a mathematical model using a method of «parallel compressors». The model is intended to estimate the impact of the air inlet distortion on the primary parameters of the aero-engine.  The paper presents rated estimation results in the context of twin spool turbofan design for two typical cruiser modes of flight of the supersonic passenger jet. In estimation the base values σbase and the average values of the inlet ram recovery σave remained invariable. Thus, parametrical calculations were performed for each chosen relative value of the area of low-pressure region.The paper shows that an impact degree of the inlet distortion on the engine thrust for two modes under consideration is essentially different. In other words, if in the subsonic mode the impact assessment can be confined only to taking into account the influence of decreasing average values of the inlet total pressure, the use of such an assumption in the supersonic cruiser mode may result in considerable errors.With invariable values of the pressure recovery factor at the engine intake, which correspond to the speed of flight for a typical air inlet of external compression σbase, and average value σave, a parameter Δσuneven  has the main effect on the engine thrust, and degree of this effect essentially depends on a difference between σave and σbase values.


Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).


2019 ◽  
Vol 4 (2) ◽  
pp. 16
Author(s):  
Eljufout ◽  
Toutanji ◽  
Al-Qaralleh

Several standard fatigue testing methods are used to determine the fatigue stress-life prediction model (S-N curve) and the endurance limit of Reinforced Concrete (RC) beams, including the application of constant cyclic tension-tension loads at different stress or strain ranges. The standard fatigue testing methods are time-consuming and expensive to perform, as a large number of specimens is needed to obtain valid results. The purpose of this paper is to examine a fatigue stress-life predication model of RC beams that are developed with an accelerated fatigue approach. This approach is based on the hypothesis of linear accumulative damage of the Palmgren–Miner rule, whereby the applied cyclic load range is linearly increased with respect to the number of cycles until the specimen fails. A three-dimensional RC beam was modeled and validated using ANSYS software. Numerical simulations were performed for the RC beam under linearly increased cyclic loading with different initial loading conditions. A fatigue stress-life model was developed that was based on the analyzed data of three specimens. The accelerated fatigue approach has a higher rate of damage accumulations than the standard testing approach. All of the analyzed specimens failed due to an unstable cracking of concrete. The developed fatigue stress-life model fits the upper 95% prediction band of RC beams that were tested under constant amplitude cyclic loading.


Author(s):  
Lily N Edwards-Callaway ◽  
M Caitlin Cramer ◽  
Caitlin N Cadaret ◽  
Elizabeth J Bigler ◽  
Terry E Engle ◽  
...  

ABSTRACT Shade is a mechanism to reduce heat load providing cattle with an environment supportive of their welfare needs. Although heat stress has been extensively reviewed, researched, and addressed in dairy production systems, it has not been investigated in the same manner in the beef cattle supply chain. Like all animals, beef cattle are susceptible to heat stress if they are unable to dissipate heat during times of elevated ambient temperatures. There are many factors that impact heat stress susceptibility in beef cattle throughout the different supply chain sectors, many of which relate to the production system, i.e. availability of shade, microclimate of environment, and nutrition management. The results from studies evaluating the effects of shade on production and welfare are difficult to compare due to variation in structural design, construction materials used, height, shape, and area of shade provided. Additionally, depending on operation location, shade may or may not be beneficial during all times of the year, which can influence the decision to make shade a permanent part of management systems. Shade has been shown to lessen the physiologic response of cattle to heat stress. Shaded cattle exhibit lower respiration rates, body temperatures, and panting scores compared to un-shaded cattle in weather that increases the risk of heat stress. Results from studies investigating the provision of shade indicate that cattle seek shade in hot weather. The impact of shade on behavioral patterns is inconsistent in the current body of research, some studies indicating shade provision impacts behavior and other studies reporting no difference between shaded and un-shaded groups. Analysis of performance and carcass characteristics across feedlot studies demonstrated that shaded cattle had increased ADG, improved feed efficiency, HCW, and dressing percentage when compared to cattle without shade. Despite the documented benefits of shade, current industry statistics, although severely limited in scope, indicate low shade implementation rates in feedlots and data in other supply chain sectors do not exist. Industry guidelines and third party on-farm certification programs articulate the critical need for protection from extreme weather but are not consistent in providing specific recommendations and requirements. Future efforts should include: updated economic analyses of cost versus benefit of shade implementation, exploration of producer perspectives and needs relative to shade, consideration of shade impacts in the cow-calf and slaughter plant segments of the supply chain, and integration of indicators of affective (mental) state and preference in research studies to enhance the holistic assessment of cattle welfare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cui Wang ◽  
Ling Cai ◽  
Yaojian Wu ◽  
Yurong Ouyang

AbstractIntegrated renovation projects are important for marine ecological environment protection. Three-dimensional hydrodynamics and water quality models are developed for the Maowei Sea to assess the hydrodynamic environment base on the MIKE3 software with high resolution meshes. The results showed that the flow velocity changed minimally after the project, decreasing by approximately 0.12 m/s in the east of the Maowei Sea area and increasing by approximately 0.01 m/s in the northeast of the Shajing Port. The decrease in tidal prism (~ 2.66 × 106 m3) was attributed to land reclamation, and accounted for just 0.86% of the pre-project level. The water exchange half-life increased by approximately 1 day, implying a slightly reduced water exchange capacity. Siltation occurred mainly in the reclamation and dredging areas, amounting to back-silting of approximately 2 cm/year. Reclamation project is the main factor causing the decrease of tidal volume and weakening the hydrodynamics in Maowei Sea. Adaptive management is necessary for such a comprehensive regulation project. According to the result, we suggest that reclamation works should strictly prohibit and dredging schemes should optimize in the subsequent regulation works.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Hamid Ait Said ◽  
Hassan Noukrati ◽  
Hicham Ben Youcef ◽  
Ayoub Bayoussef ◽  
Hassane Oudadesse ◽  
...  

Three-dimensional hydroxyapatite-chitosan (HA-CS) composites were formulated via solid-liquid technic and freeze-drying. The prepared composites had an apatitic nature, which was demonstrated by X-ray diffraction and Infrared spectroscopy analyses. The impact of the solid/liquid (S/L) ratio and the content and the molecular weight of the polymer on the composite mechanical strength was investigated. An increase in the S/L ratio from 0.5 to 1 resulted in an increase in the compressive strength for HA-CSL (CS low molecular weight: CSL) from 0.08 ± 0.02 to 1.95 ± 0.39 MPa and from 0.3 ± 0.06 to 2.40 ± 0.51 MPa for the HA-CSM (CS medium molecular weight: CSM). Moreover, the increase in the amount (1 to 5 wt%) and the molecular weight of the polymer increased the mechanical strength of the composite. The highest compressive strength value (up to 2.40 ± 0.51 MPa) was obtained for HA-CSM (5 wt% of CS) formulated at an S/L of 1. The dissolution tests of the HA-CS composites confirmed their cohesion and mechanical stability in an aqueous solution. Both polymer and apatite are assumed to work together, giving the synergism needed to make effective cylindrical composites, and could serve as a promising candidate for bone repair in the orthopedic field.


Sign in / Sign up

Export Citation Format

Share Document