scholarly journals Use of the Versatility of Fungal Metabolism to Meet Modern Demands for Healthy Aging, Functional Foods, and Sustainability

2020 ◽  
Vol 6 (4) ◽  
pp. 223 ◽  
Author(s):  
Jacqueline A. Takahashi ◽  
Bianca V. R. Barbosa ◽  
Bruna de A. Martins ◽  
Christiano P. Guirlanda ◽  
Marília A. F. Moura

Aging-associated, non-transmissible chronic diseases (NTCD) such as cancer, dyslipidemia, and neurodegenerative disorders have been challenged through several strategies including the consumption of healthy foods and the development of new drugs for existing diseases. Consumer health consciousness is guiding market trends toward the development of additives and nutraceutical products of natural origin. Fungi produce several metabolites with bioactivity against NTCD as well as pigments, dyes, antioxidants, polysaccharides, and enzymes that can be explored as substitutes for synthetic food additives. Research in this area has increased the yields of metabolites for industrial applications through improving fermentation conditions, application of metabolic engineering techniques, and fungal genetic manipulation. Several modern hyphenated techniques have impressively increased the rate of research in this area, enabling the analysis of a large number of species and fermentative conditions. This review thus focuses on summarizing the nutritional, pharmacological, and economic importance of fungi and their metabolites resulting from applications in the aforementioned areas, examples of modern techniques for optimizing the production of fungi and their metabolites, and methodologies for the identification and analysis of these compounds.

2007 ◽  
Vol 98 (5) ◽  
pp. 1058-1069 ◽  
Author(s):  
Eva Landström ◽  
Ulla-Kaisa Koivisto Hursti ◽  
Wulf Becker ◽  
Maria Magnusson

The aim of the present study was to survey attitudes to and use of functional foods and to investigate which demographic variables and attitudes to diet and health predict consumption of functional foods among Swedish consumers. A questionnaire was developed and sent to 2000 randomly selected Swedish citizens aged between 17 and 75 years. A total of 972 (48 %) responded, 53 % were female and 44 % male. Mean age was 45 years. The results revealed that 84 % of respondents were familiar with the concept of functional foods; 83 % had consumed/purchased at least one of the seven functional food products presented in the questionnaire. Of those who had consumed a functional food, 25 % had perceived effect of it. Positive correlations were seen between consumers perceiving a personal reward from eating functional foods, having an interest in natural products and an interest in general health. Consumption/purchase of functional foods was related to beliefs in the effects of the products, having consumed nutraceuticals or dietary supplements, having a diet-related problem personally or in the family, and a high level of education. The characteristic Swedish functional food consumer has a high level of education, is health-conscious and interested in healthy foods and believes in the health effect of functional foods. Thus, factors other than demographics better explain consumption of FF. However, the study population may represent a more health-conscious segment of the Swedish population in general. Additional studies are therefore required to elucidate the attitudes and use of FF in different consumer groups.


2021 ◽  
Vol 45 (03) ◽  
pp. 19-25
Author(s):  
Devinder Dhingra ◽  
K. Kandiannan

Many communities in the world consume naturally growing and cultivated/ farmed seaweeds as food. Currently, commercial cultivation/farming produces more than 96% of seaweeds in the world and only around 3-4% is obtained from wild harvest (noncultivated). Naturally occurring and cultivated seaweeds are categorized into green, brown and red seaweeds, based on their pigmentation. More than 200 species of seaweeds are of commercial value, but only around 10 species of seaweeds are popularly cultivated. China, Indonesia, the Republic of Korea and the Philippines are the leading producers of cultured/ farmed species (viz. Eucheuma, Japanese kelp, Gracilaria, Unndaria pinnatifid); and Chile, China and Norway for wild species (mainly brown and red) and Chilean kelp. Seaweeds are rich in dietary fiber (polysaccharides), essential amino acids, major and micronutrients (minerals), vitamins etc. It has been reported that some species are a good source of plant growth regulators. Mainly, the people in China, Japan and Korea relish the soups, stews, flakes, coatings, snacks, etc., made from seaweeds. The use of seaweeds as human food in India is not very common. The second major use of seaweeds after food is the extraction of three important hydrocolloids (Agar, Alginate and Carrageenan). These are used as food additives and in many other industrial applications. A small portion of seaweed is used as an ingredient as livestock feed and fish feed. Seaweed meal and liquid extract of seaweed have been tried in conjunction with inorganic fertilizers with beneficial effects on crop yield, quality produce and soil health. Seaweed is an important marine resource and the coastline in India can be utilized to commercially cultivate seaweed species beneficial for human health and plants. Research is required in developing functional foods, health foods and nutraceuticals from seaweeds to improve the health and nutritional status of the human population. This paper briefly describes the status of production and utilization of seaweeds in different parts of the world.


2020 ◽  
Vol 86 (17) ◽  
Author(s):  
Xiaopei Zhang ◽  
Amal Al-Dossary ◽  
Myer Hussain ◽  
Peter Setlow ◽  
Jiahe Li

ABSTRACT The bacterium Bacillus subtilis has long been an important subject for basic studies. However, this organism has also had industrial applications due to its easy genetic manipulation, favorable culturing characteristics for large‐scale fermentation, superior capacity for protein secretion, and generally recognized as safe (GRAS) status. In addition, as the metabolically dormant form of B. subtilis, its spores have attracted great interest due to their extreme resistance to many environmental stresses, which makes spores a novel platform for a variety of applications. In this review, we summarize both conventional and emerging applications of B. subtilis spores, with a focus on how their unique characteristics have led to innovative applications in many areas of technology, including generation of stable and recyclable enzymes, synthetic biology, drug delivery, and material sciences. Ultimately, this review hopes to inspire the scientific community to leverage interdisciplinary approaches using spores to address global concerns about food shortages, environmental protection, and health care.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 997 ◽  
Author(s):  
Katja F. Hellendahl ◽  
Sarah Kamel ◽  
Albane Wetterwald ◽  
Peter Neubauer ◽  
Anke Wagner

Natural ribonucleoside-5’-monophosphates are building blocks for nucleic acids which are used for a number of purposes, including food additives. Their analogues, additionally, are used in pharmaceutical applications. Fludarabine-5´-monophosphate, for example, is effective in treating hematological malignancies. To date, ribonucleoside-5’-monophosphates are mainly produced by chemical synthesis, but the inherent drawbacks of this approach have led to the development of enzymatic synthesis routes. In this study, we evaluated the potential of human deoxycytidine kinase (HsdCK) as suitable biocatalyst for the synthesis of natural and modified ribonucleoside-5’-monophosphates from their corresponding nucleosides. Human dCK was heterologously expressed in E. coli and immobilized onto Nickel-nitrilotriacetic acid (Ni-NTA) superflow. A screening of the substrate spectrum of soluble and immobilized biocatalyst revealed that HsdCK accepts a wide range of natural and modified nucleosides, except for thymidine and uridine derivatives. Upon optimization of the reaction conditions, HsdCK was used for the synthesis of fludarabine-5´-monophosphate using increasing substrate concentrations. While the soluble biocatalyst revealed highest product formation with the lowest substrate concentration of 0.3 mM, the product yield increased with increasing substrate concentrations in the presence of the immobilized HsdCK. Hence, the application of immobilized HsdCK is advantageous upon using high substrate concentration which is relevant in industrial applications.


Author(s):  
MANJULA K SAXENA ◽  
NEERJA SINGH ◽  
SUDHIR KUMAR ◽  
DOBHAL MP ◽  
SOUMANA DATTA

Several biologically active secondary metabolites from aquatic plants have been extracted and identified using modern instrumental BioTechniques and used in various ways as flavors, food, additives, coloring agents, nutraceuticals, cosmetics, and also as unique source of pharma industries for the discovery or development of new drugs. From algae to aquatic macrophytes belonging to various categories, aquatic plants produce a variety of compounds such as polyketides, peptides, alkaloids, flavonoids, phenolic compounds, terpenes, steroids, quinones, tannins, coumarins, and essential oils commercially involving in antibiotic, antiviral, antioxidant, antifouling, anti-inflammatory, anticancer, cytotoxic, and antimitotic activities; thus making them a rich source of medicinal compounds. Moreover, they are comprehensively used in human therapy, veterinary, agriculture, scientific research, and in countless areas. Importantly these chemicals are exercised for developing new antimicrobial and cancer drugs. Furthermore, antioxidant molecules in aquatic plants and seaweeds have recently been acknowledged. This review contains a consolidated contemporary document consisting of entire knowledge available on pharmaceutical products of aquatic plants and highlights major differences among secondary metabolites found in aquatic (algae) and terrestrial plants.


Author(s):  
V. Zhdankin

This review summarizes industrial applications of inorganic and organic polyvalent (hypervalent) iodine compounds. Inorganic iodate salts have found some application as a dietary supplements and food additives. Iodine pentafluoride is used as industrial fluorinating reagent, and iodine pentoxide is a powerful and selective oxidant that is particularly useful in analytical chemistry. Common organic hypervalent iodine reagents such as (dichloroiodo)benzene and (diacetoxyiodo)benzene are occasionally used in chemical industry as the reagents for production of important pharmaceutical intermediates. Iodonium salts have found industrial application as photoinitiators for cationic photopolymerizations. Various iodonium compounds are widely used as precursors to [18F]-fluorinated radiotracers in the Positron Emission Tomography (PET).


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2931 ◽  
Author(s):  
Pedro Ferreira-Santos ◽  
Elisa Zanuso ◽  
Zlatina Genisheva ◽  
Cristina M. R. Rocha ◽  
José A. Teixeira

In Europe, pine forests are one of the most extended forests formations, making pine residues and by-products an important source of compounds with high industrial interest as well as for bioenergy production. Moreover, the valorization of lumber industry residues is desirable from a circular economy perspective. Different extraction methods and solvents have been used, resulting in extracts with different constituents and consequently with different bioactivities. Recently, emerging and green technologies as ultrasounds, microwaves, supercritical fluids, pressurized liquids, and electric fields have appeared as promising tools for bioactive compounds extraction in alignment with the Green Chemistry principles. Pine extracts have attracted the researchers’ attention because of the positive bioproperties, such as anti-inflammatory, antimicrobial, anti-neurodegenerative, antitumoral, cardioprotective, etc., and potential industrial applications as functional foods, food additives as preservatives, nutraceuticals, pharmaceuticals, and cosmetics. Phenolic compounds are responsible for many of these bioactivities. However, there is not much information in the literature about the individual phenolic compounds of extracts from the pine species. The present review is about the reutilization of residues and by-products from the pine species, using ecofriendly technologies to obtain added-value bioactive compounds for industrial applications.


2019 ◽  
Vol 2019 (DPC) ◽  
pp. 000749-000779
Author(s):  
Elena Barbarini ◽  
Claire Troadec

In recent years, several new power module designs have emerged, principally driven by the severely challenging requirements for high power density and integration from the automotive industry. Indeed, electric and hybrid cars are the best example of technology innovation in the design of power modules. The Toyota Prius' fourth generation double-sided cooling power modules might be the most well-known example. Yet today many other module manufacturers are also proposing new designs that move away from conventional power module layers and technologies. In our presentation, we will start with market trends and illustrate how industrial applications still remain the biggest part of the power module market. We will then demonstrate that the automotive industry is leading in technological innovations in packaging, helping and accelerating the implementation of these new technologies thanks to high manufacturing volumes. We will detail these technology trends by providing real teardown and cost analysis of various power modules. We will explain how they are creating opportunities for some material suppliers, and at the same time, are transforming today's businesses for power packaging.


2011 ◽  
Vol 14 (6) ◽  
pp. 1001-1007 ◽  
Author(s):  
Sarah Stark Casagrande ◽  
Manuel Franco ◽  
Joel Gittelsohn ◽  
Alan B Zonderman ◽  
Michele K Evans ◽  
...  

AbstractObjectiveTo study the association between the availability of healthy foods and BMI by neighbourhood race and socio-economic status (SES).DesignTrained staff collected demographic information, height, weight and 24 h dietary recalls between 2004 and 2008. Healthy food availability was determined in thirty-four census tracts of varying racial and SES composition using the Nutrition Environment Measures Survey–Stores in 2007. Multilevel linear regression was used to estimate associations between healthy food availability and BMI.SettingBaltimore City, Maryland, USA.SubjectsAdults aged 30–64 years (n 2616) who participated in the Healthy Aging in Neighborhoods of Diversity across the Life Span study.ResultsAmong individuals living in predominantly white neighbourhoods, high availability of healthy foods was associated with significantly higher BMI compared with individuals living in neighbourhoods with low availability of healthy food after adjustment for demographic variables (β = 3·22, P = 0·001). Associations were attenuated but remained significant after controlling for dietary quality (β = 2·81, P = 0·012).ConclusionsContrary to expectations, there was a positive association between the availability of healthy food and higher BMI among individuals living in predominantly white neighbourhoods. This result could be due to individuals in neighbourhoods with low healthy food availability travelling outside their neighbourhood to obtain healthy food.


2021 ◽  
Vol 7 (1) ◽  
pp. 36
Author(s):  
Maria Sousa-Silva ◽  
Daniel Vieira ◽  
Pedro Soares ◽  
Margarida Casal ◽  
Isabel Soares-Silva

Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation. The emerging applications of this yeast reinforce its potential in the white biotechnology sector. Nonetheless, it is necessary to expand the knowledge on its metabolism, regulatory networks, and transport mechanisms, as well as to develop more robust genetic manipulation systems and synthetic biology tools to promote the full exploitation of C. jadinii.


Sign in / Sign up

Export Citation Format

Share Document