scholarly journals The Effects of Salts and Osmoprotectants on Enzyme Activities of Fructose-1,6-biphosphate Aldolases in a Halotolerant Cyanobacterium, Halothece sp. PCC 7418

Life ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 23 ◽  
Author(s):  
Siripat Ngoennet ◽  
Masaki Honda ◽  
Tanutcha Patipong ◽  
Takashi Hibino ◽  
Rungaroon Waditee-Sirisattha ◽  
...  

The halotolerant cyanobacterium, Halothece sp. PCC 7418, possesses two classes of fructose-1,6-bisphosphate aldolase (FBA): H2846 and H2847. Though class I (CI)-FBA H2846 is thought to be associated with salt tolerance, the regulatory mechanisms, molecular characteristics, and expression profiles between H2846 and class II (CII)-FBA H2847 have scarcely been investigated. Here, we show that the accumulation of the H2846 protein is highly responsive to both up- and down-shock with NaCl, whereas H2847 is constitutively expressed. The activity of CI- and CII-FBA in cyanobacterial extracts is correlated with the accumulation patterns of H2846 and H2847, respectively. In addition, it was found that these activities were inhibited by NaCl and KCl, with CII-FBA activity strikingly inhibited. It was also found that the CI-FBA activity of recombinant H2846 was hindered by salts and that this hindrance could be moderated by the addition of glycine betaine (GB), whereas no moderation occurred with other potential osmoprotectant molecules (proline, sucrose, and glycerol). In addition, a phylogenetic analysis showed that CI-FBAs with higher similarities to H2846 tended to be distributed among potential GB-synthesizing cyanobacteria. Taken together, our results provide insights into the independent evolution of the CI- and CII-FBA gene families, which show distinct expression profiles and functions following salt stress.

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1312
Author(s):  
Jia Liu ◽  
Weicong Qi ◽  
Haiying Lu ◽  
Hongbo Shao ◽  
Dayong Zhang

Salt tolerance is an important trait in soybean cultivation and breeding. Plant responses to salt stress include physiological and biochemical changes that affect the movement of water across the plasma membrane. Plasma membrane intrinsic proteins (PIPs) localize to the plasma membrane and regulate the water and solutes flow. In this study, quantitative real-time PCR and yeast two-hybridization were engaged to analyze the early gene expression profiles and interactions of a set of soybean PIPs (GmPIPs) in response to salt stress. A total of 20 GmPIPs-encoding genes had varied expression profiles after salt stress. Among them, 13 genes exhibited a downregulated expression pattern, including GmPIP1;6, the constitutive overexpression of which could improve soybean salt tolerance, and its close homologs GmPIP1;7 and 1;5. Three genes showed upregulated patterns, including the GmPIP1;6 close homolog GmPIP1;4, when four genes with earlier increased and then decreased expression patterns. GmPIP1;5 and GmPIP1;6 could both physically interact strongly with GmPIP2;2, GmPIP2;4, GmPIP2;6, GmPIP2;8, GmPIP2;9, GmPIP2;11, and GmPIP2;13. Definite interactions between GmPIP1;6 and GmPIP1;7 were detected and GmPIP2;9 performed homo-interaction. The interactions of GmPIP1;5 with GmPIP2;11 and 2;13, GmPIP1;6 with GmPIP2;9, 2;11 and GmPIP2;13, and GmPIP2;9 with itself were strengthened upon salt stress rather than osmotic stress. Taken together, we inferred that GmPIP1 type and GmPIP2 type could associate with each other to synergistically function in the plant cell; a salt-stress environment could promote part of their interactions. This result provided new clues to further understand the soybean PIP–isoform interactions, which lead to potentially functional homo- and heterotetramers for salt tolerance.


2011 ◽  
Vol 356-360 ◽  
pp. 2542-2550
Author(s):  
Dan Su ◽  
Nian Lai Chen ◽  
Tian Peng Gao ◽  
Chun Yan Wang ◽  
Hong Mei Sheng ◽  
...  

We evaluated the effects of silicon , potassium, and calcium on the salt-tolerant plant Halocnemum strobilaceum (Pal.l) Bie under salt stress. The experimental treatments consisted of a NaCl-only treatment (150, 450, or 900 mmol/l NaCl), a complex salts treatment (NaCl with K+, Ca2+,andSi+at total concentrations of 150, 450, or 900 mmol/l;(Na+:K+:Ca2+:Si+=1:0.03:0.14:0.004), and a control with no complex ions or NaCl. After 20 and 60 days of treatments, we investigated activities of the major antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), as well as succulence and the contents of malondialdehyde (MDA), proline(Pro) and glycine betain (GB). We found that additions of K+, Ca2+, and Si+partially alleviated the negative effects of salinity stress by increasing the salt tolerance of the plant. The improved salt tolerance was associated with increased Pro, GB,and increased activities of SOD, CAT, and POD,and decrease MDA. In contrast, the NaCl-only treatments caused marked decreases in succulence and soluble protein contents. The results of these experiments suggest that K+, Ca2+, and Si+can alleviate the damaging effects of salt on H. strobilaceum by preventing oxidative membrane and oxidant enzyme activities damage, and that they may be associated with osmotic adjustment.


2015 ◽  
Vol 43 (2) ◽  
pp. 191-196
Author(s):  
Ensieh Ashrafi ◽  
Morteza Zahedi ◽  
Jamshid Razmjoo

The effect of salt stress on enzyme activities of nine alfalfa cultivars at germination and seedling stage was studied. The activities of SOD, GR, POX and APOX were higher in salt tolerant and lower in salt sensitive cultivars. Results of the effect of salt stress on the SOD, GR, POX, APOX activities and MDA content may be used to select salt tolerance cultivars at the germination and seedling stages. SOD, GR, POX, APOX and MDA may play an important role in salt tolerant mechanisms in alfalfa. DOI: http://dx.doi.org/10.3329/bjb.v43i2.21672 Bangladesh J. Bot. 43(2): 191-196, 2014 (September)


2020 ◽  
Vol 47 (10) ◽  
pp. 912
Author(s):  
Anis Ben Hsouna ◽  
Thaura Ghneim-Herrera ◽  
Walid Ben Romdhane ◽  
Amira Dabbous ◽  
Rania Ben Saad ◽  
...  

Soil salinity is an abiotic stress that reduces agricultural productivity. For decades, halophytes have been studied to elucidate the physiological and biochemical processes involved in alleviating cellular ionic imbalance and conferring salt tolerance. Recently, several interesting genes with proven influence on salt tolerance were isolated from the Mediterranean halophyte Lobularia maritima (L.) Desv. A better understanding of salt response in this species is needed to exploit its potential as a source of stress-related genes. We report the characterisation of L. maritima’s response to increasing NaCl concentrations (100–400 mM) at the physiological, biochemical and molecular levels. L. maritima growth was unaffected by salinity up to 100 mM NaCl and it was able to survive at 400 mM NaCl without exhibiting visual symptoms of damage. Lobularia maritima showed a Na+ and K+ accumulation pattern typical of a salt-includer halophyte, with higher contents of Na+ in the leaves and K+ in the roots of salt-treated plants. The expression profiles of NHX1, SOS1, HKT1, KT1 and VHA-E1 in salt-treated plants matched this Na+ and K+ accumulation pattern, suggesting an important role for these transporters in the regulation of ion homeostasis in leaves and roots of L. maritima. A concomitant stimulation in phenolic biosynthesis and antioxidant enzyme activity was observed under moderate salinity, suggesting a potential link between the production of polyphenolic antioxidants and protection against salt stress in L. maritima. Our findings indicate that the halophyte L. maritima can rapidly develop physiological and antioxidant mechanisms to adapt to salt and manage oxidative stress.


2021 ◽  
Vol 25 (03) ◽  
pp. 591-600
Author(s):  
Huaguang Hu

Zoysia macrostachya Franch. et Sav. is a halophyte with very strong tolerance to salinity, which can serve as an alternative turfgrass for landscaping in saline-alkali land and provide the salt-tolerance genes for turfgrass breeding. To further illustrate the salt-tolerance mechanisms in this species at molecular level, the roots transcriptome of Z. macrostachya was investigated under salt stress using the Illumina sequencing platform. Altogether 47,325 unigenes were assembled, among which, 32,542 (68.76%) were annotated, and 87.61% clean reads were mapped to the unigenes. Specifically, 14,558 unigenes were shown to be the differentially expressed genes (DEGs) following exposure to 710 mM NaCl stress compared with control, including 7972 up-regulated and 6586 down-regulated DEGs. Among these DEGs, 24 were associated with the reactive oxygen species (ROS) scavenging system, 61 were found to be related to K+ and Na+ transportation, and 16 were related to the metabolism of osmotic adjustment substances. Additionally, 2327 DEGs that encoded the transcription factors (TFs) were also identified. The expression profiles for 10 DEGs examined through quantitative real-time PCR conformed to the individual alterations of transcript abundance verified through RNA-Seq. Taken together, results of transcriptome analysis in this study provided useful insights for salt-tolerance molecular mechanisms of Z. macrostachya. Furthermore, these DEGs under salt stress provided important clues for future salt-tolerance genes cloning of Z. macrostachya. © 2021 Friends Science Publishers


2021 ◽  
Vol 12 ◽  
Author(s):  
Maryamsadat Vaziriyeganeh ◽  
Shanjida Khan ◽  
Janusz J. Zwiazek

Elevated soil salinity exacerbated by human activities and global climate change poses serious threats to plant survival. Although halophytes provide many important clues concerning salt tolerance in plants, some unanswered questions remain to be addressed, including the processes of water and solute transport regulation. We performed high-throughput RNA-sequencing in roots and metabolome characterizations in roots and leaves of Puccinellia nuttalliana halophytic grass subjected to 0 (control) and 150 mM NaCl. In RNAseq, a total of 31 Gb clean bases generated were de novo assembled into 941,894 transcripts. The PIP2;2 and HKT1;5 transcript levels increased in response to the NaCl treatment implying their roles in water and ion homeostasis. Several transcription factors, including WRKY39, DEK3, HY5, and ABF2, were also overexpressed in response to NaCl. The metabolomic analysis revealed that proline and dopamine significantly increased due to the upregulation of the pathway genes under salt stress, likely contributing to salt tolerance mechanisms. Several phosphatidylcholines significantly increased in roots suggesting that the alterations of membrane lipid composition may be an important strategy in P. nuttalliana for maintaining cellular homeostasis and membrane integrity under salt stress. In leaves, the TCA cycle was enriched suggesting enhanced energy metabolism to cope with salt stress. Other features contributing to the ability of P. nuttalliana to survive under high salinity conditions include salt secretion by the salt glands and enhanced cell wall lignification of the root cells. While most of the reported transcriptomic, metabolomics, and structural alterations may have consequences to water balance maintenance by plants under salinity stress, the key processes that need to be further addressed include the role of the changes in the aquaporin gene expression profiles in the earlier reported enhancement of the aquaporin-mediated root water transport.


2011 ◽  
Vol 77 (15) ◽  
pp. 5178-5183 ◽  
Author(s):  
Hakuto Kageyama ◽  
Keshawanand Tripathi ◽  
Ashwani K. Rai ◽  
Suriyan Cha-um ◽  
Rungaroon Waditee-Sirisattha ◽  
...  

ABSTRACTAlkaline phosphatases (APases) are important enzymes in organophosphate utilization. Three prokaryotic APase gene families, PhoA, PhoX, and PhoD, are known; however, their functional characterization in cyanobacteria largely remains to be clarified. In this study, we cloned thephoDgene from a halotolerant cyanobacterium,Aphanothece halophytica(phoDAp). The deduced protein, PhoDAp, contains Tat consensus motifs and a peptidase cleavage site at the N terminus. The PhoDApenzyme was activated by Ca2+and exhibited APase and phosphodiesterase (APDase) activities. Subcellular localization experiments revealed the secretion and processing of PhoDApin a transformed cyanobacterium. Expression of thephoDApgene inA. halophyticacells was upregulated not only by phosphorus (P) starvation but also under salt stress conditions. Our results suggest thatA. halophyticacells possess a PhoD that participates in the assimilation of P under salinity stress.


2019 ◽  
Vol 672 ◽  
pp. 108059 ◽  
Author(s):  
Tanutcha Patipong ◽  
Siripat Ngoennet ◽  
Masaki Honda ◽  
Takashi Hibino ◽  
Rungaroon Waditee-Sirisattha ◽  
...  

2022 ◽  
Author(s):  
Honghong He ◽  
Shixiong lu ◽  
Huiming Gou ◽  
Xuejing Cao ◽  
Ping Wang ◽  
...  

Abstract This study aimed to have a full understanding of the steroidogenic acute regulatory gene family member and evolutionary relationship in grape. 23 VvSTARD gene members were identified and divided into five groups in different species. Analyses of the gene codon preference, selective pressure, and tandem duplication of the VvSTARD, AtSTARD, and OsSTARD genes indicated that synteny relationship occurred in grapes, Arabidopsis thaliana, and rice genomes. The 8 lipid transporter proteins were found in the tertiary structure of the STARD gene family in grape. Expression profiles of the three species microarrays showed that the expression levels of the STARD genes in different organs and the response to abiotic stress in the same subgroup had similar characteristics. In addition, analysis of the VvSTARD genes expression levels was detected in response to different hormones and abiotic stresses by quantitative real-time polymerase chain reaction (qRT-PCR), and the results were the same as those predicted by the cis-elements and the expression profiles. Meanwhile, VvSTARD5 gene was screened in high concentration NaCl treatment by qRT-PCR. Furthermore, the VvSTARD5 was located at the nucleus by subcellular location. Through the function analysis of salt tolerance in transgenic tomato, overexpression VvSTARD5 obviously improved tolerance to salt stress. Taken together, our findings Preliminary identify the functions of VvSTARD gene family and vertify STARD5 that be likely involved in regulating salt tolerance, which may have potential application molecular breeding in grape.


2019 ◽  
Vol 20 (22) ◽  
pp. 5782 ◽  
Author(s):  
Jianbo Li ◽  
Pei Sun ◽  
Yongxiu Xia ◽  
Guangshun Zheng ◽  
Jingshuang Sun ◽  
...  

The growth and production of poplars are usually affected by unfavorable environmental conditions such as soil salinization. Thus, enhancing salt tolerance of poplars will promote their better adaptation to environmental stresses and improve their biomass production. Stress-associated proteins (SAPs) are a novel class of A20/AN1 zinc finger proteins that have been shown to confer plants’ tolerance to multiple abiotic stresses. However, the precise functions of SAP genes in poplars are still largely unknown. Here, the expression profiles of Populus trichocarpa SAPs in response to salt stress revealed that PtSAP13 with two AN1 domains was up-regulated dramatically during salt treatment. The β-glucuronidase (GUS) staining showed that PtSAP13 was accumulated dominantly in leaf and root, and the GUS signal was increased under salt condition. The Arabidopsis transgenic plants overexpressing PtSAP13 exhibited higher seed germination and better growth than wild-type (WT) plants under salt stress, demonstrating that overexpression of PtSAP13 increased salt tolerance. Higher activities of antioxidant enzymes were found in PtSAP13-overexpressing plants than in WT plants under salt stress. Transcriptome analysis revealed that some stress-related genes, including Glutathione peroxidase 8, NADP-malic enzyme 2, Response to ABA and Salt 1, WRKYs, Glutathione S-Transferase, and MYBs, were induced by salt in transgenic plants. Moreover, the pathways of flavonoid biosynthesis and metabolic processes, regulation of response to stress, response to ethylene, dioxygenase activity, glucosyltransferase activity, monooxygenase activity, and oxidoreductase activity were specially enriched in transgenic plants under salt condition. Taken together, our results demonstrate that PtSAP13 enhances salt tolerance through up-regulating the expression of stress-related genes and mediating multiple biological pathways.


Sign in / Sign up

Export Citation Format

Share Document